Для расчета гидродинамики перемешивания могут быть применены четыре подхода:
– прямое численное решение уравнений Навье-Стокса (DNS),
– применение аналитических теорий турбулентности,
– применение моделей переноса турбулентности,
– применение моделей замыкания движений мелкого масштаба.
Турбулентное движение имеет вихревую структуру и графические материалы с картиной вихревых дорожек и картиной обтекания тел широко представлены в литературе. Между вихрями разного масштаба происходит постоянное взаимодействие. Структура турбулентности описывает эти взаимодействия. Течение переходит из ламинарного (слоистого) в турбулентное при потере устойчивости. В потоке появляются возмущения и при их развитии устойчивое ламинарное движение переходит в турбулентное. Такие возмещения могут вызываться, например, наличием каких-либо элементов конструкции на пути течения потока. Развитая турбулентность (завихренное течение) представляет собой иерархию вихрей [9,с.15], в которой крупные вихри теряют устойчивость и распадаются на вихри более мелких масштабов (турбулентное перемешивание). Каскадный процесс передачи энергии от больших вихрей к меньшим происходит до устойчивых вихрей минимального масштаба. Минимальные вихри передают энергию за счет вязкости, то есть их кинетическая энергия преобразуется в выделение теплоты.
Турбулентное течение в отличии от ламинарного имеет большое число степеней свободы. По этой причине в литературе широко используется статистическое описание турбулентных течений.
В потоке величины условно делятся на осредненные (регулярные) и пульсационные (нерегулярные) [9,с.12]. Для описания турбулентного течения используются осредненные величины по времени или пространству. Появление какой-либо определенной структуры потока среди возможных конфигураций определяется согласно законам математической теории вероятностей.
В реальных задачах находят на полное определение вероятностей, а только для отдельных характеристик [9,c.13], таких как давление средние скорости в различных точках пространства, а также вторые моменты пульсаций турбулентности интенсивность турбулентности, компоненты импульса. Решение проблемы турбулентности по существу эквивалентно нахождению всех моментов при задании общих условий.
Аналитическая теория турбулентности получается на основании системы уравнений Фридмана-Келлера [9,с.13.]. Для применения этих уравнений к реальному течению с конечным числом степеней свободы, требуется выполнить математическую операцию замыкания уравнений, так как неизвестных в уравнениях больше, чем самих этих уравнений.
Полуэмпирическая теория турбулентности, построенная с использованием результатов исследований течений крупномасштабных вихрей [9,с.14] основаны на рассмотрении турбулентности в виде хаосу. Вводятся понятия интенсивности турбулентности, пути перемешивания, коэффициенты турбулентной вязкости, диффузии и теплопроводности. Вводятся гипотезы, отражающие физический процесс. Затем гипотезы проверяют экспериментальным путем, в результате чего для полуэмпирических моделей получают константы.
Существует модель однородной изотропной турбулентности, но с помощью её нельзя провести описание реального потока [9,с.16]. Существует модель локально изотропной турбулентности. Согласно этой модели турбулентные пульсации для мелких масштабов с большим числом Рейнольдса можно рассматривать как однородные изотропные. Колмогоров ввел гипотезу [9,с.18] о том, что статический режим для мелких масштабов зависит от коэффициента вязкости k и скорости (средней) диссипации энергии ε.
Между масштабом больших вихрей L и масштабом мелких вихрей η, диссипация энергии ε определяет статистический режим турбулентности, так как вязкость влияет только на мелкие масштабы. Масштаб вихрей, на который влияет вязкость получается из этой гипотезы Колмогорова с учетом соображений размерности [9,с.18]:
При прямом численном уравнений Навье-Стокса, уравнения решаются для несжимаемой жидкости [10,с.311]. Для решения используются граничные периодические условия. То есть учитывается изменение функций при переходе между соседними кубическими элементами сплошной среды, как показано в работе [11,с.14].
При решении уравнений с граничными условиями методом конечных элементов с применением расчетной сетки по 3D-модели, уравнения Навье-Стокса переписываются в разностной форме для узлов сетки.
Возможно решение уравнений численным спектральным методом. По этому методу решение уравнений Навье-Стокса (с учетом граничных условий) аппроксимируется в форме усеченного ряда Фурье [10,с.312].
Конечно-разностный метод расчета сравнивается со спектральным по пяти параметрам [9,с.314]:
– скорость сходимости,
– эффективность (затраты на расчет для заданной погрешности результата),