Простой рычаг (см. рисунок) состоит из жесткой балки, которая может свободно вращаться вокруг точки подвеса или опоры. В этой балке различают две части — плечо силы (к которому прикладывается усилие) и плечо сопротивления (на него передается усилие). Используется столь простой механизм следующим образом: нагружается одно плечо рычага или к нему прикладывается усилие, после чего достигается равновесие, или же система выводится из равновесия. Закон рычага устанавливает соотношение между силами, воздействующими на каждое плечо рычага, и длинами плеч: соотношение сил равно соотношению расстояний от точек приложения этих сил до точки опоры. Данная пропорция и есть одно из главных достижений Архимеда, который разработал следующую математическую формулу:
Р • Вр
= R • Br.В средней школе любой страны обычно изучают три типа рычагов. Поскольку рычаг включает в себя три различных элемента (плечо силы, опора и плечо сопротивления), то в зависимости от их взаиморасположения мы можем разделить рычаги на три типа. Примеры всех трех типов можно найти в строении человеческого тела (рисунок 3). Архимед в своих трактатах сформулировал закон рычага, но не классифицировал различные типы рычагов — возможно, это казалось очевидным. Тем не менее не лишним будет вспомнить данную классификацию.
В рычаге первого типа (рисунок 4) точка опоры расположена между плечами силы и сопротивления. Это именно тот рычаг, который встречается в текстах Архимеда. Примерами рычага первого типа могут служить весы, качели, клещи. В рычаге второго типа (рисунок 5) точка сопротивления находится между точкой приложения силы и точкой опоры. В качестве примеров такого рычага можно привести тачку, щипцы для орехов или открывалку для бутылок.
В рычаге третьего типа (рисунок 6) точка приложения силы находится между точкой сопротивления и точкой опоры. Примеры: степлер, антистеплер и щипчики для завивки ресниц.
Трактат «О равновесии плоских фигур» выделяется из числа других математических сочинений той эпохи: в нем нет определений. Отсюда возникла гипотеза, что трактат представляет собой краткое резюме некоторого очень важного труда. В том виде, в каком он дошел до нас, он состоит из двух книг.
Первая книга начинается семью постулатами (некоторые авторы считают, что это аксиомы) и продолжается пятью утверждениями, в которых в скрытом виде используется принцип равновесия равноплечих весов, чтобы продемонстрировать различные положения о равновесии тел. Последние утверждения касаются центра тяжести треугольника, параллелограмма и трапеции.
Во второй книге в десяти утверждениях рассматривается равновесие сегмента параболы. Вторая книга тесно связана с трактатом о квадратуре параболы.
В VIII книге «Математического собрания» Папп рассказывает об Архимеде и о рычаге. По утверждению автора Архимед произнес следующую фразу: «Дайте мне точку опоры, и я переверну Землю». С помощью несложных вычислений мы увидим, что это невозможно, и странно, если Архимед допустил такую ошибку. Предположим, что для нашего предприятия мы используем рычаг первого типа, а Земля будет располагаться в 1 м от точки опоры. Сразу отметим, что у Земли нет веса, ведь она находится в космическом пространстве и не опирается ни на какую планету или иное космическое тело. Но предположим, к примеру, что мы поместили Землю на суперрычаг, который опирается на суперпланету. В случае если земля представляет собой материальную точку, отстоящую от точки опоры на 1 м, на каком расстоянии должен находиться Архимед, чтобы приложить силу к другому плечу рычага? Так как масса Земли примерно равна 6 • 1024
кг и с учетом предположения, что Архимед прикладывает усилие, равное 60 кг, расстояние от точки опоры должно быть следующим:P • Bp
=R • BrBp
= 1 м • (6 • 1024 кг)/60 кг = 1023 м.