Архимед послал эту работу Досифею Пелузийскому — это был первый труд, отправленный им кому бы то ни было после смерти его друга Конона Самосского. Трактат «О квадратуре параболы» содержит 24 утверждения. В первых пяти Архимед представляет некоторые свойства этой кривой; в утверждениях с 6-го по 16-е он проводит механический анализ параболы, основываясь на законе рычага. В утверждении 17 впервые говорится о его решении задачи квадратуры параболы с помощью механического метода, а в следующих утверждениях ученый использует метод исчерпывания, чтобы окончательно доказать правильность найденного решения (утверждение 24).
Таким образом, Архимед решает задачу квадратуры сначала механическим методом, а потом, считая его недостаточно строгим, добивается того же результата с помощью классического геометрического метода исчерпывания. Интересно отметить, что квадратура параболы является первой известной работой Архимеда, в которой тот применяет механический метод. Существует еще и третье решение этой квадратуры, которое содержится в трактате «О методе механических теорем».
Как уже говорилось, чтобы доказать утверждение 24, Архимед использовал метод исчерпывания (рисунок 11). Начинает он, принимая результат за данное, то есть с утверждения, что Sp
— площадь параболы, ST — площадь треугольника АВС, и тогда Sp= 4/3 ST. Шаги доказательства таковы.— Провести хорду параболы (АС) и построить треугольник с основанием, совпадающим с этой хордой и третьей вершиной, совпадающей с вершиной параболы (В). При этом у параболы появляются еще две хорды АВ и СВ.
— Аналогично построить треугольники ADB и ВЕС.
— Такую операцию можно продолжать до бесконечности, причем получаемый многоугольник будет все более и более приближаться к параболе.
— В утверждении 21 доказывается, что каждый треугольник, построенный по такому принципу, имеет площадь, равную 1/4 от площади предыдущего треугольника. То есть получается SADB
=SВЕС = 1/4Sтреугольника— Архимед предположил, что мы можем достаточно долго заполнять пространство между треугольником и параболой построением новых треугольников на вновь образованных хордах.
— Основываясь на этой идее, он смог доказать, что площадь под параболой не может быть больше 4/3 площади изначального треугольника, но не может она быть и меньше 4/3.
— Таким образом, с помощью метода доказательства от противного выводится соотношение Sp
=4/3SТ, что и требовалось доказать.Самый древний пример того, что можно считать провозвестником вычисления бесконечно малых величин, мы встречаем у Зенона Элейского (490-430 до н.э.). Рассмотренная им процедура (дихотомия, последовательное деление пополам) представляла собой прецедент для работы греческих математиков в последующие века.
Архимед вплотную подошел к идее пределов в различных своих работах, где он употреблял метод исчерпывания. Одна из таких работ — «О квадратуре параболы». Речь идет о том, что складывание бесконечного числа величин дает в результате конечное число. Хотя Архимед и не мог суммировать все слагаемые, ему, несомненно, удалось достичь удовлетворительного приближения к искомой сумме интуитивным способом. Эта сумма вычисляется в утверждении 23, предпоследнем пункте трактата, как раз перед утверждением, в котором второй раз в данном тексте представлена квадратура параболы. Опираясь на этот результат, он смог доказать решение задачи о квадратуре параболы методом доказательства от противного. В сущности, утверждение 23 служит базой для решения задачи, то есть его можно рассматривать как инструмент вычисления для достижения поставленной цели. Утверждение 23 гласит:
«Если некоторые величины соотносятся друг с другом как один к четырем, то сумма всех величин и еще одна треть самой маленькой величины составит четыре трети самой большой».
Объясним это более понятным образом. Берем квадрат и делим его на четыре равные части. Складываем квадрат с его четвертью. Четверть тоже делим на четыре части и так далее до бесконечности, каждый раз прибавляя четверть к предыдущей сумме. Затем суммируются площади всех этих частей и прибавляется 1 /3 самой маленькой из них. Результат всегда будет составлять 4/3 площади изначального квадрата (см. рисунки 12 и 13 на следующей странице; на рисунке 12 представлено только одно деление, а на рисунке 13 — все деления).
Как можно увидеть, результат всегда равен А + 1/3 А, то есть сумма всех последовательных делений, проделанных указанным способом, равна 1/3 площади изначального большого квадрата. Здесь Архимед приходит интуитивным образом к следующему выражению, описывающему п делений квадрата:
В наше время такая последовательность называется геометрической прогрессией, в которой каждый следующий элемент получается путем умножения предыдущего на определенное постоянное число, называемое знаменателем прогрессии. Общая формула геометрической прогрессии такова: аn
= а1 • r(n-1)В нашем случае имеем
a1
= Ar = 1/4 → an
= 1/(4(n-1)) • А.