Читаем Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей полностью

Если рассмотреть историю отрасли, окажется, что многие, если не большинство, самых лучших, интересных, новых и оригинальных идей в области ИИ сгенерированы людьми, которые пытались понять, как работает человеческий интеллект. Сюда входят и математические основы того, что мы сейчас называем глубоким обучением и обучением с подкреплением, и изобретение математической логики Джоном Булем, и работа Лапласа по теории вероятностей. Из более поздних примеров можно вспомнить интерес к математике познания и к тому, как люди рассуждают в условиях неопределенности, который привел Джуду Перла к работе над байесовскими сетями для вероятностного вывода и причинного моделирования в ИИ.

М. Ф.: Вы описали свою работу как попытку «обратного проектирования ума». Как выглядит ее методология? Насколько я знаю, вы много работаете с детьми.

Дж. Т.: Меня с самого начала крайне интересовал вопрос, каким образом наш мозг извлекает столь многое из столь малого. Даже если ребенок не сможет повторить действия, которые ему показали, он все равно поймет, что происходит.

Мы знаем, что корреляция и причинность – не одно и то же и что корреляция не всегда подразумевает причинность. Можно измерить две переменные в наборе данных и увидеть, что они коррелируют, но это не значит, что значение первой обусловливает значение второй. Этот факт часто цитируется, чтобы показать, насколько сложно из данных наблюдений вывести причинно-следственный механизм. Но все же люди, и даже дети, делают это. Посмотрите, как быстро ребенок осваивает управление смартфоном.

Еще студентом вместе с Роджером Шепардом я начал искать, какие же механизмы позволяют людям делать обобщения на базе всего одного или нескольких примеров. Сначала мы использовали принципы байесовской статистики, байесовского вывода и байесовских сетей, то есть формулировали работу ментальных моделей причинно-следственной структуры с помощью теории вероятностей. В 1990-х гг. инструменты, разработанные математиками, физиками и статистиками для статистических выводов на базе небольших наборов данных, стали применяться для машинного обучения, что произвело настоящую революцию. Фактически в сфере ИИ начался переход от ранней символической парадигмы к парадигме статистической.

Затем мы стали задумываться над тем, откуда берутся ментальные модели, и стали изучать интеллект младенцев и детей. К концу 2000-х гг. мы добились большого прогресса, строя на основе байесовских моделей такие аспекты интеллекта, как восприятие, причинно-следственные связи, а также обнаружение сходства, изучение значений слов, планирование, принятие собственных решений и понимание чужих.

Еще 10 лет назад было построено множество удовлетворительных моделей индивидуальных когнитивных способностей, но объединяющей их теории так и не появилось. Нет у нас и модели здравого смысла.

Если посмотреть, как технологии научились делать вещи, ранее доступные только людям, то можно сказать, что у нас есть настоящий ИИ, просто не такой, каким его задумывали основатели отрасли.

М. Ф.: Это основная цель ваших исследований?

Дж. Т.: Да, в последние годы я действительно заинтересовался универсальным ИИ. И пытаюсь понять, как подобное реализуется с инженерной точки зрения. Сильное влияние на меня оказали исследования моих коллег из Гарварда Сьюзан Кэри и Элизабет Спелке. Они изучали интеллект младенцев и маленьких детей. Я уверен, что на ранней стадии развития работают самые глубокие формы обучения.

С работами Элизабет Спелке должен познакомиться любой, кто собирается заниматься ИИ уровня человека. Она убедительно показала, что уже в возрасте от двух до трех месяцев дети понимают определенные базовые вещи, например, что мир состоит из трехмерных физических объектов, которые не могут просто взять и исчезнуть. Мы называем это свойство постоянством объекта. Раньше считалось, что дети осознают это примерно к году, но Спелке и другие показали, что во многих отношениях наш мозг с самого рождения уже подготовлен к пониманию мира с точки зрения физических объектов и интенциональных агентов.

М. Ф.: Вопрос важности предустановленных структур в ИИ породил множество дискуссий. Показывают ли исследования Спелке, что такие структуры нужны и важны?

Дж. Т.: Идея создания машины, которая изначально обладает интеллектом ребенка и постепенно обучается, была высказана Аланом Тьюрингом в той же статье, где он описал свой тест. Я допускаю, что это одна из самых старых идей в сфере ИИ. Еще в 1950 г. Тьюринг предположил, как построить машину, умеющую проходить его тест, – не стремиться повторить мозг взрослого человека, а начать с детского мозга и постепенно научить его всему. Он сравнил детский мозг с только что купленным блокнотом: маленький механизм и множество чистых листов.

Работы Элизабет Спелке, Рене Байаржон, Лоры Шульц, Элисон Гопник и Сьюзан Кэри показали, что врожденные механизмы обучения невероятно сложны. Сложнее обучения без учителя: дети учатся на гораздо меньшем количестве данных и глубже понимают изучаемые явления.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1917. Разгадка «русской» революции
1917. Разгадка «русской» революции

Гибель Российской империи в 1917 году не была случайностью, как не случайно рассыпался и Советский Союз. В обоих случаях мощная внешняя сила инициировала распад России, используя подлецов и дураков, которые за деньги или красивые обещания в итоге разрушили свою собственную страну.История этой величайшей катастрофы до сих пор во многом загадочна, и вопросов здесь куда больше, чем ответов. Германия, на которую до сих пор возлагают вину, была не более чем орудием, а потом точно так же стала жертвой уже своей революции. Февраль 1917-го — это начало русской катастрофы XX века, последствия которой были преодолены слишком дорогой ценой. Но когда мы забыли, как геополитические враги России разрушили нашу страну, — ситуация распада и хаоса повторилась вновь. И в том и в другом случае эта сила прикрывалась фальшивыми одеждами «союзничества» и «общечеловеческих ценностей». Вот и сегодня их «идейные» потомки, обильно финансируемые из-за рубежа, вновь готовы спровоцировать в России революцию.Из книги вы узнаете: почему Николай II и его брат так легко отреклись от трона? кто и как организовал проезд Ленина в «пломбированном» вагоне в Россию? зачем английский разведчик Освальд Рейнер сделал «контрольный выстрел» в лоб Григорию Распутину? почему германский Генштаб даже не подозревал, что у него есть шпион по фамилии Ульянов? зачем Временное правительство оплатило проезд на родину революционерам, которые ехали его свергать? почему Александр Керенский вместо борьбы с большевиками играл с ними в поддавки и старался передать власть Ленину?Керенский = Горбачев = Ельцин =.?.. Довольно!Никогда больше в России не должна случиться революция!

Николай Викторович Стариков

Публицистика
100 великих угроз цивилизации
100 великих угроз цивилизации

Человечество вступило в третье тысячелетие. Что приготовил нам XXI век? С момента возникновения человечество волнуют проблемы безопасности. В процессе развития цивилизации люди смогли ответить на многие опасности природной стихии и общественного развития изменением образа жизни и новыми технологиями. Но сегодня, в начале нового тысячелетия, на очередном высоком витке спирали развития нельзя утверждать, что полностью исчезли старые традиционные виды вызовов и угроз. Более того, возникли новые опасности, которые многократно усилили риски возникновения аварий, катастроф и стихийных бедствий настолько, что проблемы обеспечения безопасности стали на ближайшее будущее приоритетными.О ста наиболее значительных вызовах и угрозах нашей цивилизации рассказывает очередная книга серии.

Анатолий Сергеевич Бернацкий

Публицистика
Чем женщина отличается от человека
Чем женщина отличается от человека

Я – враг народа.Не всего, правда, а примерно половины. Точнее, 53-х процентов – столько в народе женщин.О том, что я враг женского народа, я узнал совершенно случайно – наткнулся в интернете на статью одной возмущенной феминистки. Эта дама (кандидат филологических наук, между прочим) написала большой трактат об ужасном вербальном угнетении нами, проклятыми мужчинами, их – нежных, хрупких теток. Мы угнетаем их, помимо всего прочего, еще и посредством средств массовой информации…«Никонов говорит с женщинами языком вражды. Разжигает… Является типичным примером… Обзывается… Надсмехается… Демонизирует женщин… Обвиняет феминизм в том, что тот "покушается на почти подсознательную протипическую систему ценностей…"»Да, вот такой я страшный! Вот такой я ужасный враг феминизма на Земле!

Александр Петрович Никонов

Публицистика / Прочая научная литература / Образование и наука / Документальное