Н. Б.: Именно так. Разумеется, нас интересуют и приложения на базе ИИ, которые могут появиться в ближайшем будущем. Мне кажется, проблема возникает, когда начинают путать краткосрочный и долгосрочный контексты.
М. Ф.: А о чем нужно беспокоиться в ближайшие пять лет?
Н. Б.: На мой взгляд, выгоды от вещей, которые появятся в ближайшее время, перевешивают недостатки. Достаточно посмотреть на экономику и на все те области, где могут пригодиться более умные алгоритмы. Даже простой алгоритм прогнозирования кривых спроса, работающий в фоновом режиме в большом логистическом центре, позволит сократить запасы товаров и снизить цены.
Нейронные сети могут распознавать опухоли на рентгеновских снимках и помогать в постановке диагнозов. Работая в фоновом режиме, они позволят оптимизировать обслуживание пациентов. Предприниматели найдут массу возможностей. А с научной точки зрения интересно хоть немного понять, как работает интеллект и каким образом осуществляется восприятие.
М. Ф.: Многих беспокоит такая вещь, как оружие, самостоятельно выбирающее цель. Поддерживаете ли вы запрет на оружие такого типа?
Н. Б.: Хотелось бы, чтобы мир смог избежать новой гонки вооружений с тратой огромных сумм на совершенствование роботов-убийц. Вообще говоря, я бы предпочел, чтобы машинный интеллект использовался исключительно в мирных целях. Но если смотреть более масштабно, сложно понять, что именно нужно запрещать.
Есть мнение, что следует запретить автономные дроны, самостоятельно выбирающие цель. Но в качестве альтернативы у нас есть девятнадцатилетний парень, которому поручено нажимать кнопку, когда на экране появляется надпись «Огонь». Я не понимаю, чем это отличается от полностью автономной системы. Куда важнее, чтобы был человек, который будет отвечать за случившееся, если что-то пойдет не так.
М. Ф.: Но можно представить ситуации, в которых автономная машина предпочтительнее. Например, в США отмечались случаи расизма со стороны полицейских. В правильно спроектированной роботизированной системе предвзятость можно исключить. Кроме того, робота-полицейского можно запрограммировать так, чтобы он начинал стрелять только после того, как в него попадет пуля.
Н. Б.: Мне бы хотелось, чтобы люди вообще перестали воевать. Но раз войны неизбежны, наверное, лучше, когда машины убивают другие машины. Если речь идет об ударах по конкретным целям, важна возможность наносить точные удары, позволяющие избежать сопутствующего ущерба. Вот почему я говорю, что, если принять во внимание специфику, общие расчеты сильно усложняются, и непонятно, как должно выглядеть соглашение в отношении автономного оружия.
Этические вопросы возникают и в других областях применения, таких как наблюдение, управление потоками данных, маркетинг и реклама. Все это в долгосрочной перспективе тоже может повлиять на человеческую цивилизацию.
М. Ф.: То есть нужны законы, регулирующие применение этих технологий?
Н. Б.: Без регулирования действительно не обойтись. Вы же не хотите, чтобы с дрона, оснащенного программой распознавания лиц, можно было с большой дистанции убить человека. Точно так же вы не хотите, чтобы дроны, летающие через аэропорт, задерживали самолеты. Я уверен, что по мере увеличения количества беспилотников потребуется военизированная структура для их контроля.
М. Ф.: С момента публикации вашей книги прошло около пяти лет. Ваши ожидания оправдались?
Н. Б.: Развитие происходит быстрее, чем я предсказывал.
М. Ф.: В книге вы писали, что компьютер победит чемпиона мира по игре го где-то через десять лет, примерно в 2024 г. Но это случилось через два года.
Н. Б.: Я писал, исходя из предположения, что развитие будет иметь стабильную скорость. Но прогресс пошел намного быстрее, отчасти благодаря особым усилиям, которые фирма DeepMind приложила к решению этой конкретной задачи. Были привлечены хорошие специалисты и выделены вычислительные мощности. В результате нам продемонстрировали впечатляющие возможности систем глубокого обучения.
М. Ф.: А какие препятствия стоят на пути к сильному ИИ?
Н. Б.: Сильный ИИ требует более совершенных методов обучения без учителя. Ведь только небольшая часть знаний и навыков взрослого человека формируется при помощи явных инструкций. В основном же мы просто наблюдаем за происходящим вокруг, используя для улучшения модели мира сенсорный канал. В детстве мы много пробуем и ошибаемся – и таким способом учимся.
Для высокоэффективных интеллектуальных систем нужны алгоритмы, умеющие использовать немаркированные данные. Большую часть своих знаний о мире люди склонны систематизировать в виде причинно-следственных связей, а в современных нейронных сетях этого практически нет. В основном достигается нахождение статистических закономерностей в сложных моделях, а не превращение этих моделей в объекты, влияющие друг на друга.