Читаем Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей полностью

Д. Х.: И со мной, и с компанией. Я родился и вырос в Лондоне и люблю этот город. Соседство Кембриджа и Оксфорда я считал конкурентным преимуществом. Причем тогда в Европе не было ни одной ставящей по-настоящему масштабные цели исследовательской компании, что давало нам высокие перспективы найма. К 2018 г. в Европе появилось несколько компаний, но мы были первыми, кто провел глубокие исследования в области ИИ. И мне кажется, что в таком деле должны принимать участие представители разных культур.

М. Ф.: Вы открываете лаборатории в европейских городах?

Д. Х.: Мы создали небольшую лабораторию в Париже, две лаборатории в Канаде – в Альберте и Монреале. После объединения с Google у нас появился офис в городе Маунтин-Вью, штат Калифорния.

М. Ф.: Насколько близко вы сотрудничаете с остальными ИИ-командами в Google?

Д. Х.: Над различными аспектами машинного обучения и ИИ в Google работают тысячи людей, которые занимаются как прикладными вопросами, так и исследованиями. Разумеется, все руководители групп знакомы друг с другом, и когда возникает такая необходимость, организуется сотрудничество. В отличие от остальных групп, DeepMind занимается исключительно сильным ИИ. У нас разработан долгосрочный план, базирующийся на данных о сути интеллекта и средствах его достижения, которые предоставляют нейробиологи.

М. Ф.: О вашей программе AlphaGo снят документальный фильм[14]. Думаю, она дает решения всем играм для двух игроков с открытой информацией. Планируете ли вы перейти к играм со скрытой информацией?

Д. Х.: Скоро выходит новая, улучшенная версия программы AlphaZero. Действительно, можно сказать, что мы разработали универсальное решение для игр типа шахмат, го, сеги и т. п. И пора делать следующий шаг. Сейчас мы работаем над стратегической игрой для ПК StarCraft со сложным игровым пространством. Там нет статичного набора фигур, как в шахматах, потому что игроки строят свои юниты. Кроме того, присутствует скрытая информация, так называемый «туман войны». Игрок не видит фрагментов экрана, пока не исследует эту область.

Работа над играми – это тренировка. Игры не являются конечной целью; мы хотим построить общие алгоритмы, которые можно будет применять к реальным задачам.

М. Ф.: До сих пор вы в основном сочетали глубокое обучение и обучение с подкреплением. Это правда, что вы считаете обучение с подкреплением способом достижения сильного ИИ?

Д. Х.: Да, это так. Это очень мощный метод, но его нужно объединять с другими. Обучение с подкреплением известно давно, но применялось оно только для решения модельных задач из-за трудностей масштабирования. Во время работы в Atari мы добавили к нему глубокое обучение, которое отвечало за обработку экрана и моделирование среды игры, и подошли к решению более крупных задач в программе AlphaGo и системе DQN. Все эти вещи лет десять назад считались невозможными.

Мы одна из немногих компаний, которые относятся к обучению с подкреплением серьезно, потому что основываемся на представлении о нем в нейробиологии. Речь идет о так называемом обучении на основе временных разностей, или TD-обучении (temporal difference learning). Оно реализуется благодаря системе выработки дофамина. Синтезирующие дофамин нейроны в случае ошибок снижают уровень его выработки, что заставляет в будущем избегать подобных ситуаций, то есть учиться на ошибках. В ответ же на положительные стимулы выработка дофамина увеличивается. Это принцип работы мозга – единственного известного нам примера интеллекта. Возможно, существуют и другие пути, но с точки зрения биологии кажется, что достаточно научиться масштабировать обучение с подкреплением.

М. Ф.: Но ведь когда ребенок учится говорить или познает мир, ни о каком обучении с подкреплением речи не идет. Это обучение без учителя – наблюдение или случайные взаимодействия с окружающей средой.

Д. Х.: Ребенок учится множеством способов: обучение с учителем реализуется при помощи родителей, учителей или сверстников, а экспериментируя с окружающим миром, дети учатся без учителя. Когда ребенок получает похвалу, это уже обучение с подкреплением. Мы работаем над всеми тремя вариантами. Обучение без учителя чрезвычайно важно. Вопрос в том, существует ли внутренняя, эволюционно заложенная мотивация, которая в конечном итоге обеспечивает вознаграждение при обучении без учителя? Есть доказательства того, что сам процесс получения информации воспринимается мозгом как вознаграждение. Имеет место также поиск новизны. Новые впечатления приводят к выработке дофамина.

М. Ф.: Я почувствовал, как глубоко вы интересуетесь нейробиологией и computer science. Сказывается ли это на подходах, которые используются в DeepMind?

Д. Х.: Да, я получил образование в обеих областях. В компании DeepMind больший упор делается на машинное обучение. При этом самая большая группа, возглавляемая профессором Принстонского университета Мэттом Ботвинником, состоит из нейробиологов.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1917. Разгадка «русской» революции
1917. Разгадка «русской» революции

Гибель Российской империи в 1917 году не была случайностью, как не случайно рассыпался и Советский Союз. В обоих случаях мощная внешняя сила инициировала распад России, используя подлецов и дураков, которые за деньги или красивые обещания в итоге разрушили свою собственную страну.История этой величайшей катастрофы до сих пор во многом загадочна, и вопросов здесь куда больше, чем ответов. Германия, на которую до сих пор возлагают вину, была не более чем орудием, а потом точно так же стала жертвой уже своей революции. Февраль 1917-го — это начало русской катастрофы XX века, последствия которой были преодолены слишком дорогой ценой. Но когда мы забыли, как геополитические враги России разрушили нашу страну, — ситуация распада и хаоса повторилась вновь. И в том и в другом случае эта сила прикрывалась фальшивыми одеждами «союзничества» и «общечеловеческих ценностей». Вот и сегодня их «идейные» потомки, обильно финансируемые из-за рубежа, вновь готовы спровоцировать в России революцию.Из книги вы узнаете: почему Николай II и его брат так легко отреклись от трона? кто и как организовал проезд Ленина в «пломбированном» вагоне в Россию? зачем английский разведчик Освальд Рейнер сделал «контрольный выстрел» в лоб Григорию Распутину? почему германский Генштаб даже не подозревал, что у него есть шпион по фамилии Ульянов? зачем Временное правительство оплатило проезд на родину революционерам, которые ехали его свергать? почему Александр Керенский вместо борьбы с большевиками играл с ними в поддавки и старался передать власть Ленину?Керенский = Горбачев = Ельцин =.?.. Довольно!Никогда больше в России не должна случиться революция!

Николай Викторович Стариков

Публицистика
100 великих угроз цивилизации
100 великих угроз цивилизации

Человечество вступило в третье тысячелетие. Что приготовил нам XXI век? С момента возникновения человечество волнуют проблемы безопасности. В процессе развития цивилизации люди смогли ответить на многие опасности природной стихии и общественного развития изменением образа жизни и новыми технологиями. Но сегодня, в начале нового тысячелетия, на очередном высоком витке спирали развития нельзя утверждать, что полностью исчезли старые традиционные виды вызовов и угроз. Более того, возникли новые опасности, которые многократно усилили риски возникновения аварий, катастроф и стихийных бедствий настолько, что проблемы обеспечения безопасности стали на ближайшее будущее приоритетными.О ста наиболее значительных вызовах и угрозах нашей цивилизации рассказывает очередная книга серии.

Анатолий Сергеевич Бернацкий

Публицистика
Чем женщина отличается от человека
Чем женщина отличается от человека

Я – враг народа.Не всего, правда, а примерно половины. Точнее, 53-х процентов – столько в народе женщин.О том, что я враг женского народа, я узнал совершенно случайно – наткнулся в интернете на статью одной возмущенной феминистки. Эта дама (кандидат филологических наук, между прочим) написала большой трактат об ужасном вербальном угнетении нами, проклятыми мужчинами, их – нежных, хрупких теток. Мы угнетаем их, помимо всего прочего, еще и посредством средств массовой информации…«Никонов говорит с женщинами языком вражды. Разжигает… Является типичным примером… Обзывается… Надсмехается… Демонизирует женщин… Обвиняет феминизм в том, что тот "покушается на почти подсознательную протипическую систему ценностей…"»Да, вот такой я страшный! Вот такой я ужасный враг феминизма на Земле!

Александр Петрович Никонов

Публицистика / Прочая научная литература / Образование и наука / Документальное