Проблема в том, что нейробиология – обширная область, и если специалист по машинному обучению обратится к ней по какому-либо вопросу, он просто запутается в огромном массиве информации. Многие говорят, что исследования ИИ базируются на нейробиологии, но не могут объяснить, как это происходит. Существуют две крайности. В проекте Blue Brain делаются попытки смоделировать мозг на уровне коры…
М. Ф.: Это проект, который возглавляет Генри Маркрам?
Д. Х.: Да. Там пытаются реконструировать колонки кортекса. Это может быть интересно с точки зрения нейробиологии, но, на мой взгляд, это не самый эффективный путь к созданию ИИ. Все происходит на слишком низком уровне. Мы же в DeepMind пытаемся понять мозг на уровне систем и алгоритмов, которые он реализует, и возможностей, функций и представлений, которые он использует. Нас не интересует точное устройство человеческого мозга. Нет никакой причины создавать компьютерную модель, точно копирующую, например, образование новых нейронов гиппокампа. Но очень интересно, каким способом реализуются функции, за которые он отвечает: эпизодическая память и ориентация в пространстве.
М. Ф.: Самолеты летают, как и птицы, но при этом им не приходится хлопать крыльями.
Д. Х.: Прекрасная аналогия. Да, можно сказать, что мы в DeepMind как бы пытаемся понять принципы аэродинамики, наблюдая за полетом птиц, чтобы потом абстрагироваться от деталей этого полета и создать самолет. До изобретения аэродинамического профиля были только безуспешные попытки использовать деформируемые крылья. Мы поняли, что мозг масштабирует обучение с подкреплением, и ведем разработки в этом направлении. Важно научиться сужать пространство поиска. Этот момент часто упускают специалисты в области ИИ, игнорирующие нейробиологию.
М. Ф.: Недавно в DeepMind смоделировали нейроны решетки, отвечающие за пространственную ориентацию. Это случай, когда одна и та же базовая структура естественным образом возникает как в мозге, так и в искусственных нейронных сетях.
Д. Х.: Это одно из наших крупнейших достижений за последний год. Нам написали Эдвард и Мэй-Бритт Мозер, которые в свое время получили Нобелевскую премию за открытие нейронов решетки. Они предположили, что эти нейроны дают оптимальный способ представления пространства при вычислениях. Теперь нейробиологи проверяют, статичны ли эти нейроны или модифицируются в структуру на ходу, что лучше всего подходит для самообучающейся системы.
Кроме того, недавно на базе наших ИИ-алгоритмов мы создали новую теорию о том, как может работать префронтальная кора головного мозга. Я думаю, со временем работа ИИ-алгоритмов заставит нас по-другому посмотреть на устройство мозга, поскольку является хорошим аналитическим инструментом для экспериментов. Через сравнение ИИ-системы с человеческим мозгом можно изучать природу сознания, творчества и сновидений.
М. Ф.: Вы считаете, что есть общие принципы интеллекта, не зависящие от среды, в которой он возникает?
Д. Х.: Именно так. Определение этих общих принципов даст ключ к пониманию человеческого мозга.
М. Ф.: Каким образом ваши достижения смогут применить на практике в ближайшем будущем?
Д. Х.: Вы уже пользуетесь множеством приложений. Это и машинный перевод, и анализ изображений, и компьютерное зрение.
Компания DeepMind начала работу над такими вещами, как оптимизация энергии в центрах обработки данных Google. Система преобразования текста в речь WaveNet теперь есть в помощнике Google во всех телефонах на платформе Android. ИИ применяется в системах рекомендаций, магазине Google Play и может в фоновом режиме экономить заряд аккумулятора в телефонах Android. Все эти вещи используются каждый день. И я думаю, что это только начало.
Надеюсь, через некоторое время мы начнем сотрудничать со сферой здравоохранения. Например, уже сейчас в известной британской офтальмологической больнице Moorfields мы диагностируем макулодистрофию по результатам сканирования сетчатки. Результаты первого этапа нашего партнерства опубликованы в журнале
Но больше всего меня радует, что ИИ вот-вот начнут применять для решения научных проблем. Мы работаем над изучением механизма сворачивания белка, значит, сможем проектировать материалы и создавать лекарства. ИИ уже используют для анализа данных с Большого адронного коллайдера, для поиска экзопланет. Существует множество массивов данных, структуру которых экспертам определить трудно, и можно озадачить этим вопросом ИИ. Надеюсь, благодаря этому в следующем десятилетии нас ждут научные достижения в фундаментальных областях.