Э. Ы.: Пока на этот вопрос нет однозначного ответа. Скорее всего, понадобится освоить обучение без учителя. Сегодня, чтобы компьютер узнал, что такое кружка, ему показывают тысячи кружек. В реальности такого не делает ни один, даже самый терпеливый и любящий, родитель. Дети просто смотрят на мир и погружаются в него. Что такое кружка, они узнают опытным путем. Именно такой вариант обучения коренным образом повысит эффективность наших систем.
Мы добились большого прогресса в специализированных вариантах ИИ для онлайн-рекламы, распознавания речи и беспилотных автомобилей, которые широкая публика ошибочно принимает за успехи в разработке сильного ИИ. В реальности подход к нему не найден. Неосведомленные люди пользуются упрощенными экстраполяциями, что создает ненужный ажиотаж вокруг этой темы.
М. Ф.: Появится ли сильный ИИ при вашей жизни?
Э. Ы.: Не знаю. Я бы этого очень хотел, но, скорее всего, потребуется намного больше времени.
М. Ф.: Как возник ваш интерес к ИИ? И как он повлиял на вашу карьеру?
Э. Ы.: На стажировке в школе я задумался, можно ли как-то автоматизировать часть моей работы, и именно тогда я узнал о нейронных сетях. Я учился и в итоге защитил докторскую диссертацию
М. Ф.: Это была первая попытка использовать глубокое обучение в компании Google?
Э. Ы.: В определенной степени да. У Google было несколько небольших проектов, связанных с нейронными сетями, но именно наша команда инициировала активное использование глубокого обучения. В качестве руководителя проекта я первым делом организовал курсы по этой теме для сотни инженеров. Это обеспечило команду Google Brain партнерами. Сначала мы взаимодействовали с группой распознавания речи. Позже поставили эксперимент с обучением без учителя, в котором нейронной сети предоставили множество случайных кадров из роликов YouTube, и она научилась распознавать кошек. В настоящее время толку от обучения без учителя не очень много, но эксперимент хорошо продемонстрировал, чего можно достичь с помощью алгоритмов глубокого обучения, используя вычислительный кластер Google.
М. Ф.: Вы работали в Google до 2012 г. А потом?
Э. Ы.: В какой-то момент я почувствовал, что для глубокого обучения лучше использовать графические процессоры. И перешел в Стэнфорд. Я хорошо помню разговор на эту тему с Джеффри Хинтоном на ежегодной Конференции по машинному обучению и нейровычислениям. Думаю, наша беседа могла повлиять на работу Джеффри с Алексом Крижевским.
Мне повезло, что я преподавал в Стэнфорде именно в то время. Там как нигде чувствовалось начало эры неспециализированных вычислений на графических процессорах. Мы раньше других увидели, что на таких процессорах лучше масштабировать алгоритмы глубокого обучения. Мой бывший студент Адам Коутс доказал, что чем больше данных дается алгоритмам глубокого обучения, тем лучше они работают. И я попросил Ларри Пейджа дать добро на использование компьютеров для создания очень большой нейронной сети.
М. Ф.: После этого с Дафной Коллер вы начали работу над проектом Coursera, а потом перешли в корпорацию Baidu?
Э. Ы.: Я помогал Дафне начать проект Coursera, так как хотел, чтобы онлайн-обучение было доступно как можно большему числу людей. На тот момент команда Google Brain уже настолько хорошо функционировала, что я был рад передать бразды правления Джеффу Дину. И пару лет работал над проектом Coursera, который мы создавали с нуля. Это продолжалось до 2014 г., после чего я перешел работать в отдел AI Group компании Baidu. Подобно тому как проект Google Brain преобразовал Google в компанию, работающую на базе ИИ, наша группа помогла осуществить аналогичную трансформацию с Baidu. Через три года я решил пойти дальше и стал генеральным директором стартапа Landing AI и партнером стартапа AI Fund.
М. Ф.: Теперь вы хотите масштабировать и трансформировать все вокруг?
Э. Ы.: Да, крупные поисковые системы я уже преобразовал, пришло время других отраслей. Проект Landing AI призван помочь компаниям применить возможности, которые открывает ИИ. Следующий шаг в этом направлении делает проект AI Fund, который ищет способы создания новых предприятий с использованием ИИ-технологий. Перед нами постоянно открываются новые перспективы. Пару десятков лет назад Google, Amazon, Facebook и Baidu по большому счету были стартапами, но все эти компании шли в ногу со временем. Проект AI Fund призван поддержать новые стартапы, которые собираются работать на базе ИИ.