М. Ф.: Многие считают, что имеющие доступ к огромному количеству данных гиганты, вроде компаний Google и Baidu, не оставляют шанса новым компаниям. Вы считаете, что у стартапов есть перспективы?
Э. Ы.: Разумеется, активы в виде накопленных данных, которыми обладают крупные поисковые системы, вряд ли оставляют шансы для новичков. Но при этом непонятно, насколько данные о потоках кликов могут пригодиться для медицинской диагностики, производства или индивидуального образования. Я думаю, что существует большая потребность в специализированных данных, и вокруг этого можно строить бизнес.
М. Ф.: Чем ваш проект AI Fund отличается от множества других венчурных компаний?
Э. Ы.: Венчурные фонды пытаются определить, насколько успешным может стать предлагаемый вариант бизнеса, и на этой основе принимают решения. Мы же создаем успешные бизнесы. Наша специализация – построение с нуля. Мы работаем с совершенно новыми командами, наставляем и поддерживаем их. От тех, кто заинтересован в работе с нами, не требуется исчерпывающей информации, достаточно резюме. Идея стартапа реализуется после начала совместной работы.
М. Ф.: К вам приходят люди с готовыми идеями или вы всегда помогаете с разработкой концепции?
Э. Ы.: Если человек принесет свою идею, мы с удовольствием ее обсудим, но у нас есть длинный список многообещающих идей, для которых нужны исполнители. И мы всегда рады ими поделиться.
М. Ф.: То есть вы привлекаете талантливых людей, предлагая возможность и инфраструктуру для стартапа?
Э. Ы.: Именно так. Хотя, конечно, для создания успешной компании требуется не только талант в сфере ИИ. Технологии уделяется так много внимания, потому что она очень быстро развивается. Но для формирования сильной команды нужен целый набор навыков: знание технологии, умение строить бизнес-стратегии, разрабатывать и продвигать продукт и развиваться. Мы создаем вертикально интегрированные компании.
М. Ф.: Кажется, любой стартап в сфере ИИ, демонстрирующий реальный потенциал, приобретается одним из технологических гигантов. Есть ли у современных стартапов шансы дойти хотя бы до первичного публичного предложения?
Э. Ы.: Я очень надеюсь, что какие-то ИИ-стартапы смогут продолжить самостоятельное существование. На самом деле мы не ставим перед собой финансовых целей, хотелось бы просто сделать что-то полезное. И грустно думать, что руководители всех успешных стартапов рано или поздно продадут свое детище.
М. Ф.: В последнее время все чаще идут разговоры о том, что успехи глубокого обучения преувеличены. Говорят даже о новой «зиме ИИ». Насколько это соответствует реальности и есть ли риск уменьшения инвестиций в эту сферу?
Э. Ы.: Я сильно сомневаюсь в наступлении очередной «зимы ИИ», но снизить ожидания относительно сильного ИИ однозначно стоит. Предыдущие «зимы» сопровождались ажиотажем по поводу новых технологий, которые не были такими уж полезными и принесли меньшую выгоду, чем ожидалось. Рост количества проектов, специалистов и компаний, работающих с глубоким обучением, означает, что сегодня эта сфера приносит доход. Инвестиции в глубокое обучение идут непрерывно. Поддержка со стороны крупных компаний базируется не на надеждах и мечтах, а на достигнутых результатах.
М. Ф.: То есть если не брать в расчет ожидания относительно сильного ИИ, вы думаете, что нас ждет прогресс в сфере глубокого обучения и новые специализированные приложения на базе этой технологии?
Э. Ы.: Современный ИИ сильно ограничен. Кроме того, сам термин описывает очень широкий набор понятий, и я думаю, что при обсуждениях ИИ в большинстве случаев подразумеваются такие инструменты, как метод обратного распространения, обучение с учителем и нейронные сети.
Он ограничен так же, как интернет или электричество. От того, что доступ к электричеству превратился в коммунальную услугу, проблемы человечества не исчезли. Не стоит ждать этого и от метода обратного распространения, несмотря на всю его эффективность. Но ясно, что от нейронных сетей, обученных с помощью этого метода, мы получили далеко не всё.
Иногда мои выступления на тему ИИ начинаются с фразы: «ИИ не волшебная палочка, он не может делать все». Странно, что в современном мире до сих пор кто-то верит во всемогущество технологий. Мы достигли огромных успехов в узком ИИ, и сильно продвинулись в общем ИИ, но обе эти вещи обозначаются одним термином. В итоге экономические блага, которые удалось получить благодаря узкому ИИ, формируют ошибочное мнение о прогрессе в общем или даже сильном ИИ. А здесь пока хвастаться нечем.
М. Ф.: Смогут ли нейронные сети обеспечить постоянный прогресс в сфере ИИ или же потребуется гибридный подход, включающий идеи из других областей, например символической логики?