As
I could hear the vent mechanism operating and all of us heard the rush of the entrapped air as it escaped from the tank. But Dick was still watching the depth gauges, “Shut main vents,” he ordered. His objective was to catch some of the air still inside the tanks in order to retain some of the resulting buoyancy. In the meantime, with approval, I noted that he had not ordered Rauch to stop the trim pump, that we were still pumping water from the midships auxiliary tanks to sea.
But Dick had let out too much air, for
In the meantime, we had continued pumping water out of the ship. Gradually, our wild gyrations lessened as we got her correctly trimmed. With ballast tanks again full of water, no air trapped in them,
It might be well to explain at this point a fact that submariners know well, but which may not be so well known to others: it is impossible for a submerged body to be so delicately trimmed or balanced that it will remain indefinitely static, neither rising nor falling. Despite fanciful tales written by people who do not know their physics, things cannot just sink part way. A submerged submarine has no reserve buoyancy; that is to say, she gains no additional buoyancy by sinking a little deeper in the water (a surface ship, passing from more-dense to less-dense water, increases imperceptibly in draft). If an eight-thousand-ton submarine is one pound heavier than the water she displaces, she will slowly sink. The deeper she goes, the greater the pressure; even the strongest hull will be slightly compressed, thus reducing the volume of displaced water and increasing the disparity between her weight and that of the water displaced. She will go all the way down until she reaches the bottom. Conversely, a submerged submarine one ounce light will ultimately broach the surface. The only exception to this rule occurs when there is a layer, or stratum, of heavier water underlying a lighter layer. In this case, the submarine can “balance” on the boundary between the two, as long as the dissimilarity continues to exist. This is known as “riding a layer.”
It is true that a submarine almost in perfect trim—as near to perfect trim as it can possibly get—might very very slowly sink in water of a certain density until it reaches a layer of water considerably cooler or more saline than the one for which trimmed, and there she will stay for a while. Ships have been known to ride thus, suspended between two layers of water of dissimilar densities, for many hours. There have even been stories about balancing a submarine so skillfully that the slight increase in displacement gained by raising a periscope would cause her slowly to drift toward the surface, and sink slowly when the periscope is withdrawn inside its bearings, but, practically speaking, such situations are rare and highly temporary.