Прямые численные расчеты двумерной гидродинамической задачи падения тела в атмосфере были выполнены, например, в работе [Hazins and Svetsov, 1993] с использованием лагранжева метода и в работе [Teterev et al., 1993] эйлеровым методом со специальным способом маркировки границы тела. Ледяное космическое тело, движущееся сквозь атмосферу, рассматривалось как жидкость с уравнением состояния воды. Расчеты показали, что метеороид в определенных ситуациях расплющивается незначительно. Он постепенно теряет свою массу вследствие сдува вещества поверхности воздухом. Под действием неустойчивостей раздробленное тело может принимать различную форму, которую заранее невозможно точно предсказать. В некоторых случаях тело стремится принять коническую форму и легче выдерживает полет сквозь атмосферу. В других случаях оно раздувается и принимает форму тора. При скорости входа в атмосферу 20 км/с 200-метровое ледяное тело теряет перед падением на поверхность менее 20 % своей начальной кинетической энергии, но увеличивает свой радиус приблизительно до 300 м на высоте 6,5 км над поверхностью Земли. На еще более низких высотах тело разрушается на мелкие фрагменты, которые на момент падения рассеиваются на расстояния вплоть до 200 м от центра падения метеороида. Масса этих фрагментов составляет 80 % от начальной массы, и их энергия достигает более чем 70 % от начальной энергии метеороида. Несмотря на разрушение тела, единая ударная волна охватывает все фрагменты. Подобные численные расчеты были проведены и для большего тела с диаметром 400 м. В этом случае тело деформируется, и при достижении поверхности Земли его полная масса уменьшается лишь на 10 %.
В работе [Teterev and Nemtchinov, 1993] была развита численная модель «мешка с песком», в которой считалось, что метеороид представляет собой совокупность частиц, движущихся сквозь атмосферу. Частицы передают энергию и импульс атмосфере и охватываются единой огибающей их ударной волной. С помощью этого метода также было показано, что сильно фрагментированный метеороид принимает коническую форму (рис. 8.1) и теряет меньше энергии, чем это было предсказано с помощью простых полуаналитических моделей дезинтеграции.
Рис. 8.1. Положения характерных частиц в модели «мешка с песком» для двух моментов полета t. Предполагается, что метеороид был мгновенно фрагментирован на высоте 25 км на 106
каменных фрагментов, заполняющих сферу с диаметром 200 м, и имел скорость 20 км/сВ расчетах предполагалось, что каменный метеороид после начальной стадии фрагментации состоит из 106
каменных фрагментов, свободно упакованных в сфере диаметром 200 м, скорость их составляет величину 20 км/c. В расчетах использовались пять групп фрагментов с радиусами от 10 см до 10 м, средний радиус составлял 1 м. Перед падением диаметр сферы, содержащей основную часть каменных фрагментов, увеличивался приблизительно до 400 м. Вследствие увеличения объема тела перед падением и уменьшения его средней плотности механический импульс, передаваемый поверхности Земли, будет меньше, чем для более компактного тела, и большая часть кинетической энергии тела будет превращаться в энергию поднимающегося факела.