Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Численное моделирование деформации и фрагментации метеороида. Действие аэродинамических сил — основная причина деформации и разрушения тел, попадающих в атмосферу. Применение модели «блина» ограничивается некоторой величиной fp отношения радиуса «блина» R к начальному радиусу тела Rb. Величина фактора расширения fp в разных работах принимается равной 2–7 в зависимости от некоторых дополнительных соображений, иногда не вполне корректных. Влияние этого фактора на параметры разрушенного тела (т. е. роя фрагментов и пара) на поздней стадии торможения, очевидно, очень велико, так как он определяет диаметр поперечного сечения, а с ним и скорость тела (струи), и температуру воздуха в ударной волне, и т. д. Таким образом, простые модели могут дать весьма грубые результаты. Более точные предсказания должны основываться на более сложном прямом численном моделировании падения.

Прямые численные расчеты двумерной гидродинамической задачи падения тела в атмосфере были выполнены, например, в работе [Hazins and Svetsov, 1993] с использованием лагранжева метода и в работе [Teterev et al., 1993] эйлеровым методом со специальным способом маркировки границы тела. Ледяное космическое тело, движущееся сквозь атмосферу, рассматривалось как жидкость с уравнением состояния воды. Расчеты показали, что метеороид в определенных ситуациях расплющивается незначительно. Он постепенно теряет свою массу вследствие сдува вещества поверхности воздухом. Под действием неустойчивостей раздробленное тело может принимать различную форму, которую заранее невозможно точно предсказать. В некоторых случаях тело стремится принять коническую форму и легче выдерживает полет сквозь атмосферу. В других случаях оно раздувается и принимает форму тора. При скорости входа в атмосферу 20 км/с 200-метровое ледяное тело теряет перед падением на поверхность менее 20 % своей начальной кинетической энергии, но увеличивает свой радиус приблизительно до 300 м на высоте 6,5 км над поверхностью Земли. На еще более низких высотах тело разрушается на мелкие фрагменты, которые на момент падения рассеиваются на расстояния вплоть до 200 м от центра падения метеороида. Масса этих фрагментов составляет 80 % от начальной массы, и их энергия достигает более чем 70 % от начальной энергии метеороида. Несмотря на разрушение тела, единая ударная волна охватывает все фрагменты. Подобные численные расчеты были проведены и для большего тела с диаметром 400 м. В этом случае тело деформируется, и при достижении поверхности Земли его полная масса уменьшается лишь на 10 %.

В работе [Teterev and Nemtchinov, 1993] была развита численная модель «мешка с песком», в которой считалось, что метеороид представляет собой совокупность частиц, движущихся сквозь атмосферу. Частицы передают энергию и импульс атмосфере и охватываются единой огибающей их ударной волной. С помощью этого метода также было показано, что сильно фрагментированный метеороид принимает коническую форму (рис. 8.1) и теряет меньше энергии, чем это было предсказано с помощью простых полуаналитических моделей дезинтеграции.



Рис. 8.1. Положения характерных частиц в модели «мешка с песком» для двух моментов полета t. Предполагается, что метеороид был мгновенно фрагментирован на высоте 25 км на 106 каменных фрагментов, заполняющих сферу с диаметром 200 м, и имел скорость 20 км/с


В расчетах предполагалось, что каменный метеороид после начальной стадии фрагментации состоит из 106 каменных фрагментов, свободно упакованных в сфере диаметром 200 м, скорость их составляет величину 20 км/c. В расчетах использовались пять групп фрагментов с радиусами от 10 см до 10 м, средний радиус составлял 1 м. Перед падением диаметр сферы, содержащей основную часть каменных фрагментов, увеличивался приблизительно до 400 м. Вследствие увеличения объема тела перед падением и уменьшения его средней плотности механический импульс, передаваемый поверхности Земли, будет меньше, чем для более компактного тела, и большая часть кинетической энергии тела будет превращаться в энергию поднимающегося факела.


След за телом. Космическое тело, проходящее сквозь атмосферу, создает за собой нагретый след, который расширяется до тех пор, пока давление в нем не сравняется с атмосферным. При расширении плотность в следе понижается. Воспользуемся очень простой идеализированной моделью цилиндрического сильного взрыва: тонкий ударно-сжатый слой с выровненным давлением внутри этой оболочки. Будем считать, что разреженная полость за фронтом расширяется до момента времени, когда давление на фронте становится примерно равным атмосферному давлению pа. Отсюда получаем, что радиус следа Rw определяется соотношением

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже