Двумерные численные расчеты взрыва в неоднородной атмосфере и различные теоретические оценки прорыва атмосферы показывают, что ударная волна вследствие уменьшения плотности воздуха с высотой над поверхностью Земли движется вверх быстрее, чем в радиальном направлении. Численные расчеты [Jones and Sanford, 1977; Jones and Kodis, 1982] взрыва с энергией 500 Мт, произведенного на поверхности, показали, что динамическое давление превосходит порог вывала леса на расстояниях в 27,5 км вместо 45 км, как это следует из закона подобия. В действительности давление и скоростной напор снижаются еще больше за счет влияния следа, не учтенного в этих расчетах.
Результаты расчета для большого тела (диаметром 10 км) приведены на рис. 8.3. Картина распределения плотности и температуры в более поздние моменты времени показана на рис. 8.4. Хотя след здесь также присутствует, но выброс вверх в основном облегчен за счет быстрого падения плотности атмосферы с высотой.
8.1.3. Световой импульс и пожары.
Падение Тунгусского космического тела 30 июня 1908 г. вызвало пожар на площади около 500 км2 [Vasilyev, 1998], что в 4 раза меньше, чем площадь опустошения леса взрывными волнами (2000 км2). Этот пожар наглядно демонстрирует роль светового излучения. В Хиросиме и Нагасаки 20–30 % всех жертв были ранены за счет ожога от прямого действия теплового излучения вспышки. Используя эти данные, можно ожидать, что лучистое воздействие при энергии взрыва в 10–30 Мт могло бы быть причиной ожогов незащищенной кожи первой степени (обратимое повреждение) для 82 % населения, а 15 % получили бы ожоги второй степени (которые можно вылечить за одну или две недели) [Glasstone and Dolan, 1977]. Конечно, жертвы прямого действия теплового излучения вне зоны «огненного шара» могут быть сокращены простыми способами гражданской обороны (убежище и другие меры защиты) при условии предупреждения о возможном падении космического объекта. Мы должны упомянуть также глазные травмы, вызывающие слепоту и ожоги сетчатки, но они также могут быть сокращены адекватной тренировкой использования специальных фильтров для глаз, опять же при условии предупреждения об опасности.Рис. 8.3. Распределение относительной плотности (
Рис. 8.4. Распределение плотности (верхняя панель) и температуры (нижняя панель) через 5 с (
Используя «экспериментальное» значение площади пожара для энергии E = 30 Мт (Тунгусское событие), получим следующие соотношения:
Ar
= 30Er, Rf = 3Er1/2 N = 2,9 103Er,где Ar
— площадь воздействия теплового излучения в км2, Rf — радиус зоны пожара в км, N — число жертв, Er — энергия теплового излучения в Мт, которая для больших взрывов примерно составляет 30–40 % от энергии взрыва E [Glasstone and Dolan, 1977] или энергии ударника Ek.При ударе метеороида и его фрагментов о поверхность твердого тела со скоростью более 15 км/с происходит испарение ударника и поверхности мишени. При расширении в вакуум характерный размер излучающей области Rf
составляет примерно 10–15 размеров ударника [Melosh et al., 1993; Немчинов и др., 1998]. Время излучения порядка Rf/V, где V — скорость удара о Землю. Излучательная эффективность в вакууме зависит от скорости ударника, но в среднем очень мала ( 10-4–10-2). Такие значения применимы при ударах об астероиды, планеты и их спутники, лишенные атмосферы, например о Луну [Ortiz et al., 2000]. Именно эти значения приняты в программе СММ для излучения факела. Однако в условиях весьма плотной атмосферы Земли они сильно преуменьшают реальную излучательную эффективность. Во-первых, наличие атмосферы сильно сдерживает разлет паров и скорость их охлаждения, увеличивает их плотность и оптическую толщину. Во-вторых, воздух нагревается в ударной волне, генерируемой при расширении паров, и сам излучает.