Рис. 9.4. Частота скоростей ударов наблюдаемых малых тел по Луне и Земле. По вертикальной оси отложены доли ударов в указанных на горизонтальной оси интервалах скоростей шириной 1 км/с (полное число ударов равно 1)
С точки зрения свойств материала мишени различаются два основных случая — пористая мишень (типа сухого песка или лунного реголита) и мишень из сплошной (малопористой) горной породы. Для пористой породы при диаметре кратера 300 м ударник должен быть в 30 раз меньше диаметра кратера — примерно 10 м. При падении на поверхность малопористых пород относительный размер кратера будет больше (из-за отсутствия потерь на нагрев динамически сжимаемой пористой среды) — примерно в 4/3 раза. Но зато малопористые породы имеют большую прочность, что приводит к пересечению кривых для малопористых и пористых пород в диапазоне диаметров кратеров около 1 м. При диаметре кратеров 100 м и более размеры кратера ограничиваются не столько прочностью пород, сколько затратами энергии на подъем выбрасываемых пород в поле тяжести. Такие кратеры называются «гравитационными». При диаметре кратера порядка 100 км для его образования требуется ударник всего в 10 раз меньший диаметра кратера. При этом возникает дополнительное новое явление — гравитационный коллапс кратеров, приводящий к образованию центральных одиночных и кольцевых горок, причем происходит уширение кратера за счет оползания его бортов.
Рис. 9.5. Зависимость отношения диаметра лунного ударного кратера к диаметру каменного астероида D/DP
от диаметра кратера D при скорости удара 18 км/с. Граничный диаметр кратеров Dsg (strength-to-gravity) отмечает диапазон перехода от доминирования прочности к доминированию силы тяжести в определении конечного размера кратера. Граничный диаметр Dsc (simple-to-complex) отмечает переход от простых чашеобразных кратеров к сложным кратерам с центральной горкой (подробнее см. [Ivanov and Hartmann, 2007])В земных условиях вся эта картина сдвигается в сторону меньших диаметров из-за большей силы тяжести на Земле. Для кратеров диаметром 10 км численное моделирование процесса кратерообразования в сочетании с данными геолого-геофизических исследований позволяет дать простую приближенную оценку связи параметров ударника и диаметра возникающего при ударе кратера [Ivanov and Hartmann, 2007]:
D 4(DP
v0,58)0,91, (9.6)где диаметр кратера D и диаметр каменного астероида DP
выражены в км, а скорость удара v — в км/с. Как ни странно, такая простая формула вполне прилично выполняется для кратеров диаметром от ~ 5 до 200 км. Для кратеров меньшего размера большую роль играет строение и свойства массива горных пород в точке удара.Используя все вышеперечисленные модели, можно пересчитать лунный темп кратерообразования к земным условиям и оценить среднюю частоту образования земных метеоритных кратеров, основываясь только на лунной кратерной хронологии, показанной на рис. 9.2. Для простоты мы не будем делать поправок на влияние атмосферы (что представляет особую задачу — см., например, [Bland and Artemieva, 2003; Bland and Artemieva, 2006]). Наши оценки — это оценки числа столкновений малых тел с Землей, энергия которых выражается в виде диаметра эквивалентного кратера, который мог бы образоваться на поверхности гипотетической безатмоферной Земли. На рис. 9.6 показаны лунные изохроны — кумулятивные оценки числа ударов по всей поверхности Земли, энергия которых выражена в диаметре эквивалентного кратера без учета атмосферы. Для кратеров размером более нескольких километров эти оценки соответствуют реальным кратерам. Такое построение удобно использовать для оценок частоты ударов по Земле.