Для сравнения, геологический возраст наиболее стабильных участков континентальной коры достигает 2 млрд лет. Там и находится основное количество известных метеоритных кратеров. Возраст наиболее крупных из них (диаметр до эрозии ~ 200 км [Иванов, 2005b]) близок к 2 млрд лет.
По этим причинам информация о частоте столкновений космических тел с Землей может быть извлечена из данных о земных кратерах только путем совместного использования с данными по лунным кратерам. Для пересчета частоты образования кратеров на Луне к условиям Земли необходимо знать распределение тел по скоростям сближения (от этого зависит эффективность гравитационной фокусировки) и законы подобия при образовании ударных кратеров (чтобы учесть разницу в силе тяжести на поверхности Луны и Земли). Методика такого пересчета от Луны к Земле (а также к другим планетам) была подробно изложена [Hartmann, 1977; Ivanov, 2001; Neukum and Ivanov, 1994]. Приведем здесь главные результаты.
Скорость сближения малых тел с Землей определяется заселенностью различных орбит. Ее статистика может быть получена с помощью моделирования телескопических наблюдений малых тел [Bottke et al., 2002b; Stuart and Binzel, 2004] или с помощью таблиц оскулирующих элементов орбит известных околоземных астероидов [Ivanov, 2001; Ivanov and Hartmann, 2007]. Отличаясь в деталях, оба метода дают схожие результаты.
Для наблюдаемой сейчас совокупности астероидов размером более 1 км, пересекающих орбиту Земли, среднее количество столкновений составляет примерно 3,5 ± 0,5 за 1 млрд лет. Это означает, что если число тел заданного размера составляет 1000 (что близко к оценке числа астероидов с абсолютной звездной величиной H 18 [Stuart and Binzel, 2004]), то в среднем интервал между столкновениями составляет около 3,5 млн лет, что сравнимо с временем жизни тел на околоземных орбитах [Gladman et al., 2000]. Значит, лишь единицы из известной сегодня тысячи тел реально столкнутся с Землей, а большинство будет выброшено за орбиту Юпитера или упадет на Солнце. Новые тела из пояса астероидов придут им на смену.
Расчет вероятности столкновений автоматически приводит к оценке вероятной скорости удара. На рис. 9.4 показаны распределения по скоростям астероидов, сталкивающихся с Землей и Луной. Модель Боттке [Bottke et al., 2002] дает несколько большие значения средних скоростей удара за счет ненаблюдаемых тел на орбитах с высоким наклонением. Тем не менее, все модели сходятся в том, что средние скорости удара на Земле и Луне близки и составляют 18–20 км/с.
Эти же оценки вероятности столкновений приводят к вычислению отношения числа ударов по Земле и Луне тел одного размера на единицу площади поверхности. Это отношение (иногда называемое болидным отношением, Rb
) составляет 1,6–1,8. Как видно, в дополнение к 13-кратному отношению площадей поверхности (6370/1738)2 Земля притягивает примерно в 1,7 раза больше тел. В сумме получается, что на один удар по Луне приходится около 20 ударов по Земле (для тел одного и того же размера). Но размеры кратеров, образуемых на Луне, будут несколько больше, чем на Земле, из-за меньшей силы тяжести.Для представления основных закономерностей подобия при образовании ударных кратеров можно представить простую зависимость отношения диаметра кратера к диаметру ударника для лунных условий при средней скорости удара 20 км/с (рис. 9.5).