Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Для Тунгусского события в облако взрыва не вовлекалась пыль, выброшенная из кратера, так как такового не было. Однако с увеличением энергии ударника кратер возникает, и происходит выброс пыли из него, причем ее количество увеличивается с ростом диаметра тела и размера кратера. Размеры частиц, образующихся при ударе, увеличиваются с увеличением размера ударника [Melosh and Vickery, 1991; O’Keefe and Ahrens, 1982b]. В последней работе были проведены численные расчеты удара для условий К — Т-границы и было показано, что масса выброшенного вещества в 100 раз больше массы ударника, но масса субмикронной пыли составляет лишь 10 % массы ударника. Аналогичные результаты были получены и для ядерных взрывов: масса пыли, вынесенной пылевым слоем, составляет 300 Мт на 1 Мт ТНТ энергии, причем субмикронная фракция пыли составляет 8 % или 24 Мт массы на 1 Мт энергии [National Research Council, 1985]. Именно эти мельчайшие частицы остаются в воздухе длительное время и распространяются вокруг всей Земли в течение нескольких недель [Covey et al., 1990].

Характерный массовый коэффициент поглощения излучения Солнца субмикронной пылью составляет примерно 3 104 см2/г (для более крупных частиц он падает примерно обратно пропорционально радиусу частиц). Оценочные значения средней массовой концентрации m и оптической толщины τ, приведенные в работе [Toon et al., 1994], можно аппроксимировать простыми зависимостями: m = 10-7E, τ = 10-5E, где энергия удара E измеряется в Мт ТНТ, массовая концентрация пыли, поднятой в стратосферу, — в г/см2, а оптическая толщина субмикронной пыли безразмерна. Зависимость m(E) определена по данным испытаний ядерного оружия. Оптическая толщина атмосферы после извержения вулкана Пинатубо в 1991 г. составляла 10-1, что соответствует энергии удара 104 Мт. Оптическая толщина облака субмикронной пыли после К — Т-удара достигла единицы, т. е. ослабление солнечного излучения было существенным (но достаточно кратковременным).

Доля T солнечного излучения, проникающего до поверхности Земли сквозь слой пыли, обычно представляется функцией оптической толщины τ, а именно: T = A exp(-τ/b) = A exp(-10-5/b), где A = 0,9, b = 6,22 для пыли; A = 0,8, b = 1,03 для дыма. Дым пропускает меньше солнечного излучения, чем пыль, потому что поглощает много света. В работе [Covey et al., 1990] исследовано поведение облака, образовавшегося при ударе с энергией 6 105 Мт. Согласно этим расчетам, понижение средней температуры составляет 8 К в течение первых двух недель после удара. Через 30 дней после удара пыль распределяется глобально и температуры восстанавливаются до первоначального уровня.

При энергии ударника, падающего в океан, равной 105 Мт, удельная масса воды, выброшенной в атмосферу, превышает содержащуюся в ней в обычных условиях (0,001 г/см2). При энергии 108 Мт удельная масса воды достигает уже 1 г/см2. Но, согласно работе [Toon et al., 1994], в диапазоне высот 16–45 км и выше 45 км не может содержаться более 0,2 г/см2 и 2 г/см2 соответственно, так как начнется конденсация. Это верхние оценки, поскольку водяной пар сильно поглощает и излучает в инфракрасном диапазоне. Это дополнительный фактор, ведущий к снижению температуры верхней атмосферы (примерно до 215 К) и интенсивным дождям. Богатая водой атмосфера неустойчива к вертикальным возмущениям, в результате чего возникает интенсивная конвекция.

Увеличение альбедо за счет формирования облаков с каплями и с льдинками приводит к снижению температуры поверхности суши Земли, океана и нижних слоев атмосферы. Это уменьшает конвекцию в нижних слоях. С другой стороны, парниковый эффект увеличивает температуру. Поэтому даже знак эффекта до сих пор не ясен. Процессы инжекции воды в атмосферу и последствия этого требуют дальнейшего изучения.

Ударные волны, образующиеся при пролете астероида и/или в результате расширения послеударного плюма и распространяющиеся со скоростями > 2 км/с, нагревают атмосферу до нескольких тысяч градусов, что способствует образованию токсичных окислов азота (NO, NO2, HNO3) [Prinn and Fegley, 1987; Zahnle, 1990] и приводит к разрушению озонового слоя Земли [Turco, 1981]. Пожары, возникающие под действием излучения плюма или в результате возвращения в атмосферу высокоскоростных выбросов, заполняют нижнюю атмосферу дымом и токсичными газами. При ударах в осадочные породы (например, известняки и доломиты) в атмосферу выбрасывается огромное количество углекислого газа (результат дегазации кальцита) и серы. Если первый, являясь парниковым газом, может привести к существенному потеплению, то соединения серы, наоборот, приводят к уменьшению температуры поверхности. Суммарный эффект определяется массовым соотношением между этими химическими соединениями и их способностью оставаться в атмосфере длительное время (см. раздел 8.6.2).


Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос