Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Определим гелиоцентрическую инерциальную систему прямоугольных координат XY Z (рис. 10.1). Исходную круговую орбиту астероида разместим в плоскости XY этой системы координат. Результаты изменения орбиты астероида будем характеризовать отклонениями его возмущенных текущих координат по радиус-вектору dr, вдоль орбиты dl и нормали к плоскости орбиты dn от координат в невозмущенном движении. Величины dr, dl, dn удобно рассматривать в астероидоцентрической орбитальной системе прямоугольных координат S, T, W. Ее начало совмещается с текущим положением в невозмущенном движении астероида. Здесь ось S направлена по радиус-вектору орбиты от центра Солнца, ось T направлена по нормали к радиус-вектору и лежит в плоскости орбиты, а ось W дополняет орбитальную систему координат до правой.

Сначала рассмотрим результат приложения малого импульса скорости dVZ, направленного по оси W, т. е. по нормали к плоскости орбиты астероида. Пусть импульс скорости прикладывается в момент нахождения астероида на оси X (рис. 10.1). Анализ показывает, что результатом является изменение наклонения орбиты небесного тела, а все остальные элементы орбиты остаются без изменения. При этом изменение движения астероида относительно первоначальной орбиты сводится к периодическим гармоническим колебаниям лишь по одной координате W. Для малого изменения орбиты колебания dn как функции времени t, отнесенные к радиусу орбиты r0, могут быть записаны в виде

где P — невозмущенный период обращения астероида по орбите, а амплитуда колебаний равна .


Рис. 10.1. Влияние импульса скорости, приложенного по оси W, на орбиту астероида


Выберем в качестве удобного масштаба текущих отклонений небесного тела в линейных единицах экваториальный радиус Земли Rэ = 6378 км. Тогда можно получить выражения для величины максимального смещения dnmax по оси Z и относительного приращения скорости dVZ/V0, необходимого для обеспечения смещения dnmax:

Отметим, что фаза колебания останется привязанной к точке коррекции орбиты небесного тела.

Нетрудно получить оценки величины требуемого импульса скорости, необходимого для увода астероида на заданное расстояние от точки коррекции, принимаемой за исходную. Оценим это расстояние для двух характерных случаев.

В первом из них примем, что орбита проходит через центр Земли, и для избежания удара необходимо получить расстояние увода, равное величине 2Rэ (коэффициент 2 берется для гарантии). Нетрудно рассчитать, что для выполнения условия избежания удара dnmax/Rэ ≥ 2 необходимо обеспечить величину относительного приращения скорости, равную dVZ/V0 = 85 10-6. Принимая для оценки требуемого изменения скорости значение V0 = 30 км/с, получим минимальное значение требуемого приращения скорости, равное dVZ = 2,6 м/с.

Во втором случае примем, что необходимо получить отклонение угрожающего тела на ∼ 12 км, т. е. на величину порядка 0,001Rэ. Это значение соответствует уходу от конкретной зоны резонансного возврата протяженностью ∼ 1 км, реализуемому с большим запасом. Очевидно, что теперь величина необходимого импульса коррекции скорости уменьшится в тысячу раз и составит величину всего лишь порядка нескольких миллиметров в секунду (dVZ = 2,6 мм/с).

Рассматривая результат коррекции орбиты по нормали, можно сразу видеть основной недостаток такой коррекции — ее периодичность и результативность лишь в относительно небольшие интервалы времени, как это следует из характера изменения величины dZW. Действительно, максимальное значение увода существует практически в течение ∼ 1/6 периода обращения тела, и оно наступит лишь через 1/4 этого периода.

Далее рассмотрим результат приложения импульса скорости по радиусвектору поражающего тела (рис. 10.2).


Рис. 10.2. Влияние импульса скорости, приложенного по оси S, на орбиту астероида


Обращаясь к производным, приведенным в работе [Эльясберг, 1965], сразу получаем, что небесное тело будет совершать периодические колебания dr, dl относительно текущего невозмущенного положения по радиус-вектору r (т. е. по координате S) и вдоль орбиты l (практически по координате T):

Можно видеть, что и здесь результат коррекции периодичен, но колебания небесного тела возникают уже по двум координатам. Рассматривая отклонение тела в подвижной относительной системе координат, привязанной к текущему первоначальному движению поражающего астероида, можно видеть, что результат коррекции представляет собой эллипс с полуосями dVr/V0 и 2(dVr/V0) (справа внизу на рис. 10.2).

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос