Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Для обеспечения регистрации потенциально опасного космического объекта космическими средствами, как правило, используются два подхода. Первый аналогичен проектированию обзорных систем в наземном телескопостроении: предлагается использовать оптический инструмент с максимально возможным полем зрения. К такому типу инструментов относятся описанные выше зарубежные проекты космического базирования. Второй подход использует так называемый барьерный принцип, аналоги которому можно найти и в наземных системах обнаружения. Этот подход ориентирован на своевременное обнаружение опасных небесных тел (ОНТ) на каком-то предельном расстоянии от Земли с помощью оптического барьера, создаваемого несколькими телескопами. Ниже предлагается обзор двух проектов. Один разрабатывается в НПО им. С. А. Лавочкина [Добров и др., 1996] и относится к первому типу, другой разрабатывается в ЦНИИМаш [Емельянов, Меркушев 2005] и относится ко второму типу.

Работы, проводимые в ЦНИИМаш, направлены на обоснование возможности обнаружения и определения параметров орбит малых (порядка 50 м) ОНТ, которые могут приближаться к Земле с произвольных направлений. Воздействия от столкновений с такими телами, как уже отмечалось, по своим масштабам подобны взрыву Тунгусского тела. Вряд ли такие тела в ближайшем будущем будут легко обнаруживаться. В лучшем случае упреждение возможно за 20–30 дней, и будет слишком поздно принимать меры для увода такого тела с угрожающей орбиты. Защита населения возможна без предотвращения падения ОНТ на Землю. Достаточно краткосрочного (за 5–20 сут) предупреждения для проведения таких мероприятий, как повсеместный увод людей из прибрежных зон морей и океанов, приостановление деятельности опасных производств, укрытие городского населения в бомбоубежищах, а в случае высокоточного определения района падения — полная эвакуация населения из района падения. Поэтому информационное обеспечение защиты населения от малых ОНТ является одним из первоочередных этапов решения проблемы АКО. Очень важно здесь привлечение космических телескопов (КТ) обнаружения и высокоточного определения прогнозируемого пролетного расстояния от Земли. По-видимому, без использования КТ эта задача не решается.

К сожалению, даже с помощью КТ, находящихся на околоземной орбите или в точке Лагранжа L1 (системы Солнце — Земля), не представляется возможным обнаруживать ОНТ, приближающиеся к Земле со стороны Солнца.

Это ограничение может быть преодолено при использовании всего двух космических телескопов, размещаемых на орбите обращения Земли вокруг Солнца, поля зрения которых образуют замкнутую барьерную зону гарантированного обнаружения малого ОНТ, идущего с любого направления. Высокоточное определение параметров орбиты и пролетного расстояния обеспечивается за счет синхронно-базисных наблюдений, проводимых при реализуемом большом расстоянии между космическими телескопами (около 0,45 а.е.), сравнимым с удаленностью ОНТ от Земли во время прохода через барьерную зону. Это расстояние превышает возможную базу между наземными телескопами на 3 порядка.

Высокая эффективность космических телескопов при решении задачи оперативного предупреждения о падении малых (размером 50–150 м) ОНТ и их использование в составе международной системы информационного обеспечения решения проблемы AKО, обусловливает существенный вклад в предупреждение об опасных сближениях с Землей. Естественно, что КТ были бы весьма эффективны для высокоточного определения параметров орбиты астероида Апофис с целью заблаговременного принятия решения о целесообразности изменения траектории астероида в случае его прогнозируемого падения на Землю.

Отметим еще проект космического средства наблюдения (КСН) «Конус» (НПО им. С. А. Лавочкина) В этом проекте рассматриваются космические средства наблюдений астероидов, перигелии и афелии орбит которых лежат в диапазонах 0,1–1 а.е. и 1–6 а.е. соответственно, а наклоны орбит к плоскости эклиптики — от 0 до 90°.

Для обнаружения приближающихся к Земле астероидов наиболее целесообразным представляется размещение КА с телескопом на орбите, совпадающей с орбитой Земли, но с некоторым отставанием от нее или опережением. При этом можно обеспечить достаточно приемлемые фазовые углы в процессе наблюдений небесных тел, и, что очень важно, зона контроля будет иметь относительно небольшие угловые размеры. Например, с расстояния 15 млн км двухсуточная зона подлета будет видна под углом около 60°. Таким образом, почти на порядок уменьшается площадь небесной сферы, подлежащая контролю, по сравнению с наблюдениями с Земли, с которой необходимо контролировать всю небесную сферу.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос