Читаем Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха полностью

Кроме того, метод перебора не дает гарантии «хорошей» оценки экстремума концентрации, так как на практике приходится иметь дело с выборками ограниченного объема, то есть с ситуациями, когда действительное число измерений концентрации за контрольный период времени Т = 1 год, гораздо меньше соответствующего объема генеральной совокупности n N. Если же промежуток времени между отдельными измерениями t = 0, то метод перебора оправдан, но не позволяет, все-таки, исключить ошибочные и «выскакивающие», то есть не принадлежащие данной статистической совокупности значения. Кроме того, в этом случае, возможно наличие корреляционной связи между членами временного ряда, что ведет к необходимости обработки лишней информации.

Таким образом, во всех случаях целесообразно находить экстремальные значения при помощи какого-либо алгоритма.

У одномерной выборки, состоящей из (n) значений, всегда имеются, по крайней мере, два конечных и однозначно определяемых экстремальных значения и также конечная широта, являющаяся разностью между этими значениями. На первый взгляд кажется, что нахождение экстремума совсем простая задача, достаточно лишь расположить (n) выборочных значений в порядке возрастания их величины и рассмотреть значения, стоящие на i – ом месте от начала или конца ( в дальнейшем нас будет интересовать i – е верхнее значение), тогда при i=n получаются экстремальные значения. На самом деле экстремальные значения, как и любая порядковая статистика, обладают выборочной неустойчивостью и определяются свойствами генеральной совокупности, поэтому правильнее их находить по выборке при помощи каких-либо специальных алгоритмов.

Как известно [40], порядковые статистики представляют собой зависимые случайные величины (даже если исходная совокупность независимая) и поэтому описывается некоторым совместным распределением. Если функция распределения случайной переменной в генеральной совокупности и функции плотности f(x) непрерывны, то в выборке объемом (n) функция плотности распределения i-й порядковой статистики выражаются формулой:

(2.19.)

Математическое ожидание i – й порядковой статистики дается выражением:

(2.20.)

Где – переменная интегрирования.

Дисперсия i – й порядковой статистики определяется из выражения:


Где

(2.21.)

Ковариация между i-й и j-й порядковыми статистиками (I j) вычисляется по формуле:

(2.22.)

Где


Нормированный коэффициент корреляции:

(2.23.)

Очевидно, что эти формулы очень сложны и малопригодны для аналитического исследования. Что касается распределения наибольшего значения Хn , то событие

Xn = X эквивалентно пересечению событий

Следовательно,

(2.24.)

Тогда, (2.25.)

(2.26.)

Последнее выражение позволяет оценить Xmax если есть информация о распределении генеральной совокупности. Для нормальной или логнормальной функции распределения, оценки математических ожиданий i – х порядковых статистик могут быть выполнены только численным интегрированием на ЭВМ.

Если известны распределение и плотность генеральной совокупности F(X) и f(X), то можно находить любой контрольный уровень (Xmax) с любой вероятностью его не превышения (превышения) из уравнения:

(2.27.)

Например, для стандартного нормального распределения :

(2.28.)


Из последнего выражения видно, что оценки вида Xmax=+3 является хорошей оценкой экстремального значения по выборке. Аналогичные оценки можно получить и для логнормального распределения. Какую же величину вероятности следует задавать для оценки экстремального значения? Однозначных рекомендаций нет. Используют уровень 2, то есть 95% и 3, то есть 99,7%. Задают и более жесткие границы, например, для частоты экстремального значения в работе [35] рекомендуется уровень 0,01%.

Конечно, одни нормы более «мягкие», другие более «жесткие», но на практике можно было бы ограничиться любыми уровнями, обеспечивающими вероятность не превышения 95%, главным является понимание того, что любая граница допуска может быть задана с определенной вероятностью ее не превышения. В данной работе предполагается детально исследовать этот вопрос и выдать конкретные рекомендации для практического использования.

Существует еще один аспект проблемы оценки санитарно-гигиенической обстановки, который связан со стационарностью рассматриваемых случайных функций (случайных процессов).

Этот вопрос имеет принципиальное значение, прежде всего для возможности применения эргодической гипотезы (общей эргодической теоремы – предельной теоремы для среднего значения случайных функций) [42]. В общем случае математическое ожидание и дисперсия случайной функции сами являются функциями времени. Если эти функции представляют собой долгопериодные регулярные колебания (как в случае метеорологических рядов), то они могут быть выявлены методами гармонического анализа и использованы для прогноза. В случае же нерегулярных колебаний, как возможность диагностики, так и прогноза становится проблематичной.

Задача существенно упрощается для стационарных случайных процессов. Для таких процессов:

(2.29.)

для любых 0= ti = T .

Среднее по времени для каждой реализации определяется как:


Перейти на страницу:

Похожие книги

Павел I
Павел I

Император Павел I — фигура трагическая и оклеветанная; недаром его называли Русским Гамлетом. Этот Самодержец давно должен занять достойное место на страницах истории Отечества, где его имя все еще затушевано различными бездоказательными тенденциозными измышлениями. Исторический портрет Павла I необходимо воссоздать в первозданной подлинности, без всякого идеологического налета. Его правление, бурное и яркое, являлось важной вехой истории России, и трудно усомниться в том, что если бы не трагические события 11–12 марта 1801 года, то история нашей страны развивалась бы во многом совершенно иначе.

Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский

История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное / Биографии и Мемуары
Кровососы. Как самые маленькие хищники планеты стали серыми кардиналами нашей истории
Кровососы. Как самые маленькие хищники планеты стали серыми кардиналами нашей истории

В этой книге предлагается совершенно новый взгляд на историю человечества, в которой единственной, главной и самой мощной силой в определении судьбы многих поколений были… комары. Москиты на протяжении тысячелетий влияли на будущее целых империй и наций, разрушительно действовали на экономику и определяли исход основных войн, в результате которых погибла почти половина человечества. Комары в течение нашего относительно короткого существования отправили на тот свет около 52 миллиардов человек при общем населении 108 миллиардов. Эта книга о величайшем поставщике смерти, которого мы когда-либо знали, это история о правлении комаров в эволюции человечества и его неизгладимом влиянии на наш современный мировой порядок.

Тимоти С. Вайнгард

Медицина / Учебная и научная литература / Образование и наука
Скала
Скала

Сюжет романа «Скала» разворачивается на острове Льюис, далеко от берегов северной Шотландии. Произошло жестокое убийство, похожее на другое, случившееся незадолго до этого в Эдинбурге. Полицейский Фин Маклауд родился на острове, поэтому вести дело поручили именно ему. Оказавшись на месте, Маклауд еще не знает, что ему предстоит раскрыть не только убийство, но и леденящую душу тайну собственного прошлого.Питер Мэй, известный шотландский автор детективов и телесценарист, снимал на Льюисе сериал на гэльском языке и провел там несколько лет. Этот опыт позволил ему придать событиям, описанным в книге, особую достоверность. Картины сурового, мрачного ландшафта, безжалостной погоды, традиционной охоты на птиц погружают читателя в подлинную атмосферу шотландской глубинки.

Б. Б. Хэмел , Елена Филон , Питер Мэй , Рафаэль Камарван , Сергей Сергеевич Эрленеков

Фантастика / Детективы / Постапокалипсис / Ненаучная фантастика / Учебная и научная литература