Трение работает по тому же принципу, что и электростатический клей, действие которого мы рассматривали чуть выше. Когда встречаются две поверхности, атомы одной из них находятся в непосредственной близости от атомов другой (точнее, на расстоянии пяти атомных диаметров)[73]
. Этого достаточно, чтобы удержать на короткое время две поверхности рядом. Если трение работает по принципу клея, почему поверхности не склеиваются на долгое время? Если вы припарковали машину на улице, почему она не приклеивается к дорожному покрытию навсегда? Почему вы можете на ней уехать?Всё дело в масштабах. Трение (приклеивание с малой силой) и адгезия (приклеивание с большой силой) различаются силой притягивания поверхностей. Сила трения между шинами припаркованной машины и дорогой достаточно велика для того, чтобы преодолеть обычные силы, на нее воздействующие. Сила гравитации (обусловленная массой машины) не может сдвинуть ее с места, как, например, и та сила, которой располагаете вы. Машина оказывается как будто «приклеенной» к земле. Но вы можете легко преодолеть эти силы, медленно тронувшись на ней вперед. С другой стороны, если угол наклона поверхности, на которой стоит автомобиль, превышает определенную величину, машина покатится вниз. При критической величине этого угла сила трения уже не удержит его.
Машины – большие и тяжелые устройства. И даже игрушечные машинки (с каким-то образом зафиксированными колесами) не останутся на месте, если их поставить на поверхность с сильным уклоном. Но представьте себе совсем маленькие и легкие машинки с большими и очень мягкими шинами. Каждая бороздка их протекторов состоит, в свою очередь, из еще более мелких шин, а те – из еще более мелких. Если сконструировать такую структуру правильно, мы получим миллиарды микроскопических шин, прикрепляющихся к поверхности. Если машина с такими шинами не будет слишком тяжелой, мы можем разместить ее на стене и она способна будет даже проехаться по потолку. Так мы создадим автомобиль-геккон – разновидность Человека-паука в виде ящерицы, который может забираться на стены. Геккон способен ходить по стенам и потолку благодаря уникальной конструкции своих лап. На его пальцах есть очень тонкие щетинки, которые называются
Сила трения как сила временного прилипания может быть преодолена другой, более значительной силой. Это утверждение справедливо для клея любого вида, как бы прочно он ни скреплял поверхности. Приложите к месту склеивания достаточно большую силу, и она разорвет либо силы притяжения (адгезии) между клеем и поверхностью, либо силы сцепления (когезии) в самом клее. Или, если клей достаточно сильный, скрепленные им материалы могут разрушиться, высвободив этот клей, который, надеюсь, не принесет вам никакого вреда.
Скольжение
Если склеивание (постоянное приклеивание) и трение (приклеивание временное) вызваны какими-то силами, то скольжение легче всего описать как отсутствие таких сил. Если вы хотите, чтобы достаточно грубая поверхность скользила по такой же грубой поверхности, вам нужно минимизировать силы трения между ними. Как же?
Чтобы сделать пол скользким, вы должны покрыть его каким-то снижающим трение материалом. Вода подойдет для этого идеально. Будет еще лучше, если в нее вы добавите немного мыла или мыльного порошка. Тогда вода не будет собираться лужицами из-за когезии отдельных капель, а распределится ровно по полу. Мокрый пол может быть скользким по двум причинам. Как мы видели в главе 3
, вода не способна сжиматься. Вы не можете заставить ее занять меньший объем. Будучи достаточно плотной и тяжелой, вода нелегко покидает место своего нахождения. Если на вашем пути на покрытом ламинатом полу есть лужица воды и вы наступаете на нее, вода не разбрызгивается моментально по сторонам и не сжимается, как губка. На какое-то мгновение между вашей ногой и полом окажется слой воды. Она не сжимается, но текуча. Когда вы наступаете на нее, она создает своеобразную «подушку» между грубыми поверхностями, снижая силу трения между ними.