Особенности фреонового газа R-134A, используемого в автомобилях, следующие:
1) велика «скрытая» теплота испарения и легко превращается в жидкость;
2) не горит и не взрывается;
3) химически устойчив и не меняется;
4) не ядовит, нет свойства окисления;
5) не портит продукты питания и одежду;
6) легко приобрести.
Согласно Международному монреальскому протоколу, объектами по ограничению применения веществ, разрушающих озонные слои, было принято 5 веществ фреонового ряда: R-ll, R-12, R-113, R-114, R-115.
Хотя по срокам с января 1996 года действует полное запрещение производства и применения веществ, разрушающих озоновые слои. Именно поэтому все современные автомобили заправляют более безопасным фреоном R134A.
Исследования этого газа показали, что неразложившийся фреон при достижении слоев стратосферы в большом количестве выделяется в тропосферу Земного шара и разрушает озоновые слои, разлагаясь под влиянием сильных ультрафиолетовых лучей из космоса, применение хладагента автомобильного кондиционера стало ограниченным.
1.2.4. Компрессорное масло в системе смазки кондиционирования воздуха
Из масел применяется полиалкиленовое – гликолевое масло (PAG) с хладагентом (R-134a) и минеральное – ранее – с R-12.
В автомобилях с современным хладагентом R-134a в качестве смазки уплотнительного кольца при работе в соединительных частях применяется компрессорное масло со спецификацией, используемой в устаревших хладагентах (R-12).
При работе главной магистрали и магистралей требуется осторожность, так как во время смазывания компрессорным маслом основного хладагента (R-134a) на уплотнительном кольце возникает явление гидрогенизации.
При работе на главной магистрали и магистралях требуется осторожность, так как при сопоставлении поглощаемости компрессорного масла хладагента (R-134a) при прочих равных условиях ее значение примерно в 180 раз выше, чем у компрессорного масла ранее применяемого хладагента. При компрессорном масле у автомобилей с новым хладагентом (R-134a) объем заправки таков же, что у автомобилей со старым хладагентом (R-12).
Из-за быстрого развития компрессоров, разработок облегченных малых компрессоров и применения новых видов хладагента еще сильнее повышаются требования к роли охлаждающего масла. Роль охлаждающего масла важна как звено способа для обеспечения длительной безопасности системы кондиционирования и стойкости к более высокой и низкой температурам.
Если посмотреть роль охлаждающей жидкости в системе, то в компрессоре участок выходного клапана является наиболее высокотемпературным местом. На этом участке образуется углерод, и нельзя допустить его наслоения.
Наибольшее количество масла, входящее в систему хладагента, вместе с жидким хладагентом должно поддерживать жидкое состояние, чтобы не препятствовать теплообмену или течению от затвердения на стенах конденсатора. Трубопровод равного давления и расширительный клапан, масло не должны содержать твердых веществ, мешающих расширению, а также создавать подобных веществ.
Во время охлаждающего цикла масла в испарителе, являющемся наиболее низкотемпературной частью, не должен создавать кристаллических осадков. Кроме того, масло не должно содержать влагу и затвердевать. При возникновении подобных явлений они прерывают течение хладагента и уменьшают эффективность охлаждения.
Охлаждающее масло должно иметь специфические особенности, которых не имеют обычные смазывающие масла. Хотя обычное смазывающее масло в основном должно отвечать только требованиям по смазывающей характеристике, а охлаждающее масло должно быть таким, чтобы при смешивании с хладагентом и низкой температуре не затвердевать, при высокой не окисляться, не вступать в химическую реакцию с хладагентом, не вызывать аварии, вступая в реакцию с используемым в оборудовании материалом.
В качестве одного из способов оценки стабильности охлаждающего масла проводят испытание в герметизированной жаростойкой стеклянной испытательной трубке, поместив в нее реально применяемый в компрессоре хладагент (R-12), металл (Fe, Си, А1) и масло. При испытании на герметизированной трубке используют масло 0,5 мл, хладагент R-12 0,5 мл. Положив в качестве катализатора медь и железо, нагревают с температуры 175 °C в течение 14 дней, измеряют количество R-12, разложенного из R-12.
Охлаждающее масло соприкасается с хладагентом при низкой температуре. Мало того, что желательно совместное сосуществование с хладагентом при низкой температуре, необходимо еще, чтобы оно не разлагало воск на воскообразные отложения.
Охлаждающее масло даже при низкой температуре не затвердевает, то есть имеет низкую температуру текучести и одновременно трудно разлагает осадки, и чем меньше разложение, тем предпочтительнее.
При чрезмерном рафинировании охлаждающего масла резко уменьшаются ароматические компоненты. Хотя среди ароматических компонентов вещества с плохой химической стабильностью, но если ароматические компоненты чистые, то возникает активное влияние этих компонентов на стабильность к окислению и предельное давление. Поэтому есть необходимость применения ручного способа рафинирования для сохранения указанных эффективных элементов. Таким образом, нужно выбирать масло с хорошим смазывающим свойством, чтобы даже при применении в реальной машине не возникало плавления.
1.2.5. Особые явления и их проявления
В фреоновых охлаждающих установках при запуске компрессора давление в картере резко падает, и хладагент, растворяемый в масле, начинает резко испаряться, поверхность масла начинает бурлить, возникает пена. Если это явление будет продолжаться длительное время, то из-за нарушения смазки трущихся частей может заклинить компрессор и сгореть.
При проникновении с всасывающей стороны компрессора или различных других путей большого количества масла в цилиндр из-за сжатия несжимаемого масла возникает опасность повреждения тарелки седла клапана. Кроме того, образуется недостаточность масла в картере, так как большое количество масла перейдет в различные части установки. Недостаточность масла становится причиной заклинивания компрессора.
Явление медного покрытия – когда в охлаждающих установках, применяющих хладагент фреоновой системы, медь, растворившись в масле, вместе с хладагентом циркулирует в установке, затем вновь оседает на поверхности металла и покрывает его, при этом:
• уменьшается активная часть зазора, компрессор заклинивает и становится неработоспособным;
• в установке либо много влаги, либо чем выше температура, тем легче влага появляется в цилиндре и на тарелке клапана.
Чем больше содержится молекул водорода R-22, по сравнению с R-12 и R-30 по сравнению с R-22, и чем больше элементов МАХ, тем сильнее это явление.
1.2.6. Составные части системы кондиционирования воздуха в автомобиле
На рис. 1.8 представлена блок-схема системы кондиционирования воздуха в автомобиле Kia Sportage 4 WD.