Читаем Азбука рисунков природы полностью

И вновь немного изменим условия. Пусть потенциальная функция также изотропна — потенциал во всех направлениях одинаков, но при появлении элемента в зоне его разгрузки появляется анизотропность. Элемент разгружает потенциал в параллельном себе направлении и не разгружает в перпендикулярном, т. е. вблизи элемента возможен перпендикулярный ему элемент и невозможен параллельный. В этом случае, если один элемент входит в зону разгрузки другого, возможны два пути — выйти из зоны разгрузки (вернуться в область с высокими значениями потенциала) или развернуться в направлении, перпендикулярном другому элементу. В этом направлении потенциал здесь также не разгружен. Если элемент подходит к другому под очень острым углом, то он скорее выйдет из зоны разгрузки, в противном случае — развернется к этому элементу и подойдет к нему под углом, близким к прямому (рис. 101). Если, удлиняясь, элемент зайдет в область, где перекрываются зоны разгрузки двух других элементов (рис. 102), то дальнейшее его продвижение в этом направлении станет невозможным, так как составляющая потенциала в этом направлении здесь разгружена. Но в направлении, перпендикулярном этому направлению, потенциал не разгружен, поэтому вершина элемента, развернувшись, подойдет к одному из двух элементов (см. рис. 102). С учетом этой особенности при принятых условиях возникнет структура, подобная изображенной на рис. 103. Отметим, что каркас этой структуры был задан таким же, как на рис. 92.

Рис. 101


Рис. 102


Рис. 103


Теперь зададим наклонную поверхность потенциального рельефа. Тогда на линии АВ расположится гребень его максимума. Но потенциал здесь будет иметь только одну составляющую в направлении линии АВ. Составляющая перпендикулярная этому направлению на линии АВ краем массива будет полностью разгружена, т. е. у края массива в полосе шириной l потенциальное поле анизотропно. При достижении на линии АВ условия Е = Р здесь будут зарождаться структурные элементы (рис. 104, а). Проникая в глубь массива, они достигнут границы зоны разгрузки элемента АВ. Здесь поле потенциальной функции становится изотропным. Пересекая «по инерции» эту линию, элемент входит в зону с меньшими значениями потенциала и стремится развернуться в зону с большими значениями — назад к линии АВ (рис. 104, б). При этом вершины элементов будут или встречаться, или заходить в зону разгрузки других элементов и подходить к элементам под прямым углом (рис. 104, в). В результате сформируются тройные сочленения. В узлах тройного сочленения элементов зоны разгрузки накладываются, потенциал здесь разгружен по всем направлениям, поэтому при росте значений потенциала новые элементы будут закладываться на выпуклых участках края структуры, перпендикулярно имеющимся элементам, потенциал в этом направлении здесь ими не разгружен (рис. 104, г). Дальнейшее развитие структуры подобно первому этапу: элементы выйдут из зоны разгрузки и начнут разворачиваться обратно и т. д. (рис. 104, д). В этой структуре размер полигонов в направлении смещающейся границы будет выдержанным.

Рис. 104


Рис. 105


В рассматриваемой схеме предполагалось, что наклон потенциальной поверхности очень крутой. Быстрый разворот элементов возможен лишь при определенных условиях: чем меньше минимальный радиус разворота, чем меньше их «инерционность» и чем больше наклон потенциальной поверхности, тем быстрее они развернутся. В противном случае будут формироваться структуры, подобные изображенной на рис. 105.

Если потенциальный рельеф задать в виде конуса, то в случае заложения в его вершине тройного сочленения элементов при возможности их быстрого разворота сформируется упорядоченная структура, состоящая из шестиугольников (рис. 106).

Во всех предыдущих схемах и разделах в случае, если один элемент подходил к другому, предполагалось, что они не пересекались. Теперь же зададим, что элементы могут пересекаться. Особенности, накладываемые этим условием, во многих случаях не требуют особого пояснения. Поэтому все рассмотренные выше схемы для различных параметров потенциального поля, скорости развития элементов и т. д. рассматривать не будем. Ограничимся лишь некоторыми примерами. Так, в однородном анизотропном поле в случае моментального образования элементов при этом условии возникнут структуры, изображенные на рис. 107, 108.

Рис. 106


Рис. 107


Рис. 108


Рис. 109


В изотропном однородном поле при моментальном образовании элементов и условии разгрузки потенциала в направлении, параллельном элементу, возникнет структура, изображенная на рис. 109, а (ср. с рис. 103). Отметим важный момент. В этих условиях при косом заходе одного элемента в зону разгрузки другого он разворачивается и подходит к элементу перпендикулярно, соответственно после пересечения элемента он выйдет из зоны разгрузки (с другой стороны) уже под прямым углом (см. рис. 109, б, в). То есть по рисунку можно определить, куда двигался элемент.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже