Читаем Бабочка и ураган полностью

Странный аттрактор — это аттрактор хаотической системы, которому свойственна фрактальная геометрия. Фрактал — это геометрический объект неправильной формы с бесконечным множеством деталей, обладающий самоподобием, и, скорее всего, имеющий дробную размерность. Странные аттракторы — сложные структуры, которые при последовательном увеличении демонстрируют самоподобие, свойственное фракталам: в них вновь и вновь проявляется одна и так же структура. Кроме того, многие из них имеют дробную размерность. Иными словами, если мы находимся на плоскости, то размерность нашего фрактального аттрактора будет больше 1, но меньше 2 и составит, к примеру, 1,5: аттрактор будет занимать больше пространства, чем кривая, но меньше, чем плоскость. Если мы находимся в пространстве, размерность фрактального аттрактора будет больше 2, но меньше 3 и составит, к примеру, 2,25: аттрактор будет занимать больше пространства, чем плоскость, но меньше, чем объемное тело. Таков смысл дробной размерности. К примеру, размерность аттрактора Лоренца примерно равна 2,06. Любопытно, что с момента открытия аттрактора Лоренца считалось, что он имеет «странный» характер (то есть является аттрактором хаотической системы и, возможно, имеет фрактальную геометрию), однако строгое математическое доказательство этого было найдено лишь в 2000 году. В 1998 году Стивен Смэйл предложил доказательство этого утверждения в качестве одной из открытых математических задач XXI столетия.

В 2002 году математик Уорвик Такер смог строго доказать существование аттрактора Лоренца в статье под названием «Аттрактор Лоренца существует». Аттрактор в форме бабочки, изображенный Лоренцем на экране компьютера, стал реальностью. Аналогичная ситуация произошла со странным аттрактором Эно, открытым с помощью компьютера в 1976 году: его существование было математически доказано лишь в 1987 году усилиями шведского математика Леннарта Карлесона, лауреата Абелевской премии 2006 года.

Странный аттрактор Уэды. Этот аттрактор, напоминающий водоворот, представляет собой сечение Пуанкаре для хаотической системы.

Слева направо и сверху вниз — последовательность увеличенных изображений аттрактора Эно. На всех иллюстрациях изображен один и тот же узор — складывающиеся кривые.

Судьба аттрактора Рёсслера, напротив, сложилась не столь удачно. Отто Рёсслер предложил ряд уравнений, описывающих химическую реакцию Белоусова — Жаботинского. Эта реакция протекает в колебательном режиме: участвующие в ней вещества непрерывно соединяются и распадаются, и в результате образуются удивительные узоры красно-синего цвета. Компьютерное моделирование решений системы дифференциальных уравнений обладало хаотическим поведением, подобным тому, что рассмотрел Аоренц при решении своей системы. Рёсслер, подобно Лоренцу, предположил, что в системе присутствует странный аттрактор — аттрактор Рёсслера, существование которого все еще не доказано. Никто до сих пор не знает, действительно ли посреди хитросплетения траекторий находится аттрактор Рёсслера или это всего лишь иллюзия, возникающая при компьютерном моделировании.

Странные аттракторы Лоренца (слева) и Рёсслера (справа). Существование последнего до сих пор математически не доказано.

Какое значение для динамики имеет фрактальная геометрия аттрактора? Можно предположить, что никакого, но это не так. Пуанкаре, Смэйл и Лоренц учат, что в основе любой динамики всегда лежит геометрия.

В классических аттракторах (фиксированных точках и предельных циклах — еще не так давно другие аттракторы были неизвестны) соседние орбиты всегда располагаются близко друг к другу, небольшие ошибки, как и предполагал Лаплас, заключены в определенных границах, таким образом, можно делать долгосрочные прогнозы. Если говорить о странных аттракторах, присущих хаотическим системам, то все обстоит иначе: две орбиты с близкими начальными условиями располагаются близко друг к другу лишь на коротком промежутке времени, после чего очень быстро отдаляются. Поведение соседних траекторий в странном аттракторе можно проиллюстрировать следующим экспериментом: если представить, что они действуют на маленькую каплю красящего вещества в жидкости, то капля постепенно примет форму очень длинной и тонкой нити, словно пронизывающей весь аттрактор.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука