Даже если точки, отмеченные красящим веществом, изначально будут находиться очень близко друг к другу, в конечном итоге они окажутся в произвольных частях аттрактора. Прогнозирование финального состояния любой из этих точек при сколь угодно малой ошибке измерения невозможно — в зависимости от допущенной ошибки финальные состояния точек могут располагаться в любой части странного аттрактора. Хаос перемешивает орбиты подобно тому, как пекарь замешивает тесто. Поведение орбит геометрически описывается посредством операций растяжения и складывания. Орбиты должны растягиваться, при этом будут возрастать ошибки (эффект бабочки), а также складываться и постепенно сплетаться по мере приближения к аттрактору (эффект карточной колоды). Растягивание увеличивает неопределенность, при складывании изначально далекие друг от друга траектории сближаются, а информация об исходном состоянии системы уничтожается. Траектории смешиваются, как смешиваются карты в колоде в руках умелого игрока. Так как операции растяжения и складывания повторяются бесконечное число раз, в аттракторах хаотических систем должно наблюдаться множество сгибов внутри каждого сгиба. Именно поэтому с геометрической точки зрения хаотические аттракторы намного сложнее классических. По мере увеличения масштаба хаотические аттракторы раскрывают всё новые и новые детали и проявляют свое самоподобие: структура хаотических аттракторов на микроуровне столь же сложна, как и на макроуровне. Одним словом, хаотические аттракторы — это фракталы.
Мы увидели, что существуют математические системы, обладающие хаотической динамикой. Но каково их практическое значение? Что такое хаос: правило или исключение?
Хаос вездесущ и проявляется повсеместно: и при движении небесных тел (задача трех тел), и при колебаниях двойных маятников, в потоках на грани турбулентности (поток Рэлея — Бенара), в некоторых химических реакциях (реакция Белоусова — Жаботинского), в определенных биологических популяциях и так далее. Открытие повсеместного присутствия хаоса стало третьей великой революцией в науке за последние 100 лет, после открытия теории относительности и квантовой механики.
Достойный упоминания пример хаотического движения в Солнечной системе — движение Гипериона, спутника Сатурна, по форме напоминающего картофелину, который, как может показаться, совершает случайные колебания. Гиперион движется вокруг Сатурна по орбите правильной формы, однако вращается вокруг себя совершенно беспорядочно: в результате быстрого хаотического движения он переворачивается каждые 6 часов и при вращении вокруг своей оси в буквальном смысле подскакивает.
* * *