Читаем Бабочка и ураган полностью

Разумеется, подобные модели не имеют аналитического решения и рассматриваются исключительно с помощью численных методов. Найти численное решение будет непросто — для этого потребуется выполнить невероятный объем расчетов. А для того чтобы расчеты можно было выполнить за разумное время, анализируемый участок земной поверхности не должен быть покрыт сетью метеостанций слишком гу сто (к примеру, при анализе климата на всем Пиренейском полуострове требуется чуть больше дюжины точек), что вызывает определенные неудобства.

Множество групп международного научного сообщества создали свои модели общей циркуляции. Модели такого типа используют ведущие агентства, занимающиеся прогнозированием климата, в частности Межправительственная группа экспертов по изменению климата ООН и Институт космических исследований имени Годдарда при NASA. По мере накопления результатов наблюдений и увеличения мощностей компьютеров приемы моделирования физических процессов и численные методы решения уравнений становятся все лучше.



Прогноз роста средних температур в 2070–2100 годах согласно модели общей циркуляции НаdCМЗ, предложенной Межправительственной группой экспертов по изменению климата ООН.


Точность и неопределенность в математических моделях


Не будем слишком торопить события и вернемся в 60-е годы, когда юный коллега Жюля Чарни, метеоролог Эдвард Лоренц, предложил любопытную модель из трех обыкновенных дифференциальных уравнений для описания движений воздуха в атмосфере. Сегодня она называется системой Лоренца. Как вы знаете из второй главы, Лоренц обнаружил, что решения системы демонстрируют хаотическое поведение, поэтому предсказать состояние рассматриваемой системы на практике нельзя. Если при наблюдении текущего состояния системы была допущена какая-либо ошибка (а для реальных систем это, по всей видимости, неизбежно), то дать надежный прогноз состояния системы в далеком будущем невозможно. Проще говоря, в системе Лоренца наблюдался эффект бабочки. Предоставим слово самому Лоренцу:

«Когда я применил свои результаты для анализа атмосферы, имеющей в высшей степени непериодический характер, то увидел, что если начальные условия в точности неизвестны, то предсказать достаточно далекое будущее нельзя ни одним методом. В силу неизбежной неточности и неполноты метеорологических наблюдений долгосрочные прогнозы, по-видимому, невозможны».

Вернемся еще дальше в прошлое, в 1908 год. К тому моменту Анри Пуанкаре уже подробно изучил целый класс нестабильных явлений, для которых предсказать динамику системы в долгосрочном периоде было невозможно. Пуанкаре взял за основу задачу трех тел, а также (обратите внимание!) задачу прогнозирования погоды.

Он признавал, что погода неустойчива, о чем было известно метеорологам, поэтому они не могли предсказать, где и когда будет наблюдаться циклон:

«Почему метеорологи испытывают такие трудности при составлении прогнозов погоды? Почему дожди и грозы возникают, казалось бы, случайно и многие люди, которым кажется смешным молиться о солнечном затмении, молятся, чтобы пошел дождь или на небе засияло солнце? Метеорологи знают, что в некоторой точке возникнет циклон, но не могут предсказать, где именно. Стоит возникнуть перепаду температур в одну десятую градуса между двумя точками, и тут и там возникнут циклоны, которые обрушат всю свою мощь на страны, которые в противном случае никак не пострадали бы».

Давид Рюэль писал: «Математика Пуанкаре сыграла свою роль, однако его идеи, касавшиеся метеорологических прогнозов, пришлось открыть независимо от него». В своей статье от 1963 году Лоренц упомянул труды Пуанкаре о динамических системах, однако идеи этого французского математика о хаосе, погоде и климате были ему неизвестны.

Поскольку даже такая простая модель, как модель Лоренца, демонстрирует хаотическую динамику, и более того, подобная динамика часто наблюдается в нелинейных системах, разумно предположить, что любая точная модель атмосферы также будет чувствительной к начальным условиям, и в результате взмах крыльев бабочки в такой системе действительно сможет вызвать торнадо. Очевидно, что верно и обратное. Не важно, взмахнет ли бабочка крыльями, — это в любом случае приведет к изменению начальных условий, и если в первом случае торнадо пройдет над Техасом, то во втором — над Сингапуром, или над Нью-Йорком, или, что еще лучше, не возникнет вовсе. Взмах крыльев бабочки вызовет мельчайшие изменения в атмосфере, и по прошествии определенного периода времени состояние атмосферы значительно изменится.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука