Читаем Бабочка и ураган полностью

«С момента публикации работы Лоренца (1963) известно, что даже простые модели могут обладать сложной динамикой в силу своей нелинейности. Нелинейная динамика, присущая климатической системе, наблюдается при моделировании климата на любом временном интервале. Модели, описывающие взаимодействие атмосферы и океана, климата и биосферы, климата и экономики могут демонстрировать похожую динамику, для которой характерны частичная непредсказуемость, бифуркации и переход к хаосу».

Чтобы в полной мере понять смысл заявлений, касающихся глобального изменения климата, следует понимать, что ни погоду, ни климат нельзя смоделировать так, чтобы с абсолютной точностью можно было предсказать, что произойдет через неделю или через 100 лет. Результаты, получаемые с помощью компьютерного моделирования, представляют собой сценарии с важной вероятностной составляющей, которую в каждом случае следует оценивать отдельно. Любой сценарий или модель, описывающие, к примеру, среднюю температуру на планете в 2100 году, зависят от ряда предпосылок (уровня выбросов парниковых газов, изменений солнечной активности и пр.). Основная проблема при составлении прогнозов по большей части заключается в том, чтобы определить, какие из этих предпосылок соответствуют текущему положению вещей. Мы еще не знаем, какие аспекты климата можно предсказать в долгосрочном периоде, поскольку ненаблюдаемые нами колебания могут вызвать значительные изменения в будущем.

Тем не менее достаточно непросто осознать, что погода и климат априори непредсказуемы в долгосрочном периоде в силу присутствия хаоса. В 1970-е годы многие исследователи ожидали, что путем добавления все новых и новых переменных они смогут стабилизировать систему и спрогнозировать состояние атмосферы в долгосрочном периоде. К примеру, Жюль Чарни оптимистично заявлял: «Не существует причины, по которой нельзя будет предсказать жизненный цикл атмосферы с помощью численных моделей, — все дело в том, что современные модели обладают серьезными недостатками». Однако один из этих серьезных недостатков был и остается неустранимым — это хаос.

Для некоторых ученых, как отмечает Тим Палмер (один из ведущих климатологов Межправительственной группы экспертов по изменению климата) в статье под названием «Глобальное потепление нелинейно. Можем ли мы быть в этом уверены?», хаос проявляется не столько в предсказании климата, сколько в метеорологических прогнозах. Следуя терминологии, предложенной Лоренцем, составление метеорологических прогнозов относится к задачам о начальных условиях, в которых эффект бабочки играет важную роль, поскольку при решении таких задач рассматриваются различные траектории. Если мы хотим составить прогноз погоды, нужно следовать вдоль траектории-решения уравнений, начальные условия которых описывают погоду на сегодня (температуру, давление, влажность и пр.). Прогнозирование климата, напротив, основано на решении так называемой краевой задачи, в которой влияние эффекта бабочки не столь заметно, поскольку основную роль в ней играют аттракторы, а не траектории. При изучении климата интерес представляет поведение системы в долгосрочном периоде, которое описывается аттрактором. Иными словами, если мы хотим предсказать климат, не нужно следовать вдоль какой-либо конкретной траектории — напротив, необходимо будет проанализировать, как ведут себя траектории в долгосрочном периоде по мере приближения к аттрактору, ведь именно аттрактор описывает средний погодный режим, то есть климат. Если мы также хотим понять, какое влияние оказывают на климат различные факторы и величины (концентрация СО2 в атмосфере, солнечное излучение и пр.), необходимо рассмотреть, как эти параметры меняют форму аттрактора.

Если мы представляем климат в виде аттрактора атмосферной системы, то эффект бабочки проявляться не будет. Однако, поскольку климатическая система нелинейна и, предположительно, обладает хаотическим поведением, то аттрактор будет странным и, возможно, будет иметь впадины, изобилующие крупными и мелкими деталями, то есть не слишком нестабильным. Представим, что климат описывается аттрактором системы Лоренца, и поворот вокруг его правого «крыла» означает, что пойдет дождь, а поворот вокруг левого «крыла» соответствует ясной погоде. В этом случае мы сможем определить закономерность, которой будет подчиняться климат в целом: в какие-то дни будет идти дождь, в другие — нет. Тем не менее нам сложно будет получить более подробную информацию, так как траектории вращаются вокруг каждого «крыла» аттрактора случайным образом.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука