Читаем Баллистическая теория Ритца и картина мироздания полностью

Ошибочность общепринятого закона до сих пор не выявлена экспериментально потому, что специально такой задачи никто не ставил, хотя время от времени в печати и мелькали сообщения об отклонениях от закона Био-Савара и открытии магнитных сил, направленных, согласно Амперу, вдоль элементов тока (см. статьи В. Околотина об опытах Грано и других). А ведь несовпадение законов Ампера-Вебера и Био-Савара уже давно побуждало к их сравнительной проверке на опыте. Конечно, эксперименты Ампера и Вебера трудоёмки, зато оборудование для них нужно самое простое. Впрочем, проблема состоит ещё и в том, что в опыте удаётся наблюдать лишь взаимодействие замкнутых токов, тогда как взаимодействие элементов тока исследовать затруднительно. Точное установление в эксперименте действительного закона сил со стороны элементов тока явилось бы самым простым и действенным доказательством Баллистической Теории Ритца. И самое интересное, что в тех редких опытах, где такие взаимодействия незамкнутых токов изучались, реально открыты отклонения от закона Био-Савара и теории Максвелла ( В. Околотин, "Техника-молодёжи" № 12, 1973). Другой способ проверки электродинамики Ритца — это изучение движения в магнитном поле медленных зарядов, скорость которых сопоставима со скоростью дрейфа электронов. Тогда добавкой v 2в сравнении с 2 Vvуже нельзя пренебречь, и возникнет заметное отклонение от закона F л=qVBдля силы Лоренца, которое можно будет зафиксировать. Более того, получается, что эта сила будет действовать даже на неподвижный заряд. Соответственно, при пропускании тока через проводник можно было бы наблюдать, как находящиеся рядом с ним металлические предметы слабо поляризуются. Однако такого рода экспериментов пока никто не ставил.

<p>§ 1.8 Электромагнитная индукция и полнота электродинамики Ритца</p>

Интересно отметить, что по нашей теории в покоящихся телах явления индукции в замкнутой цепи возникают только вследствие конечной скорости распространения. Действительно, если обратиться к разложениям параграфа 3, то увидим, что, поскольку члены второго порядка затронуты слабо, то только эта конечная скорость вводит ускорения, и именно ускорения определяют явления индукции.

Вальтер Ритц, "Критический анализ общей электродинамики" [8]

Итак, хотя в настоящее время общепринят максвеллов вариант электродинамики, задолго до неё была принята электродинамика Ампера, развитая Вебером с Гауссом. Настолько проста и естественна была их теория, что почти весь XIX в. все признавали только её, отвергая появившуюся поздней туманную теорию Максвелла. Лишь открытие Герцем в 1888 г. электромагнитных волн привело к признанию максвелловой электродинамики и забвению исконной теории Ампера. Но уже в 1908 г. Вальтер Ритц показал, что в рамках подхода Ампера-Вебера удаётся легко описать все электродинамические эффекты, включая предсказанные Максвеллом электромагнитные волны, а также естественно объяснить ряд явлений, которые теория Максвелла либо вовсе не смогла предсказать, либо просто постулировала. Ритц вскрыл глубинные механизмы электрических, магнитных, гравитационных воздействий, объяснив и релятивистские эффекты — без теории относительности.

Ампер, метко прозванный "Ньютоном электричества", строил электродинамику, избегая гипотез и опираясь лишь на опыт. Так он открыл взаимодействие токов и свёл к нему магнетизм, показав, что магниты — это наборы круговых молекулярных токов. Как в законе тяготения Ньютона, Ампер сводил электрические эффекты к силам взаимодействия элементарных частиц и токов — центральным силам, направленным вдоль линии соединения частиц. Сходство законов взаимодействия зарядов, токов и масс Ампер объяснял единством электрических, магнитных и гравитационных сил. Не в пример простой и естественной электродинамике Ампера, Максвелл оперировал абстрактными, искусственно введёнными понятиями, вроде эфира, электромагнитного поля, вектор-потенциала, нецентральных, вихревых сил.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже