Чтобы окончательно доказать адекватность и достаточность классического описания движения частиц, рассмотрим напоследок туннельный эффект. Туннельный эффект — это последнее важное "проявление волновых свойств" электронов и других частиц, которое тоже легко истолковать классически. Электроны образуют в металле электронный газ, который, как всякий газ, не имеет резких границ и, потому, частично выходит за пределы металла. Именно так электроны и "туннелируют" сквозь границу без помощи волновых свойств.
Рассмотрим подробней эффект туннелирования и природу работы выхода электронов. Известно, что электрон может покинуть металл, лишь затратив энергию, равную работе выхода
И, всё же, туннельный эффект не доказывает квантовых фантазий о размытом в виде волны электроне, но допускает чисто классическую трактовку, если правильно истолковать работу выхода. Прежде всего, подвижные электроны, даже в холодном металле, то и дело покидают его поверхность, придавая ей положительный заряд, который тянет электроны обратно (Рис. 169). В итоге, над поверхностью любого металла реет облако взмывающих и падающих электронов, — своего рода электронная атмосфера, окружающая металл тонким слоем. Эта прослойка и задаёт работу выхода. Каждый электрон, вырвавшись с поверхности металла, влетает в облако, электрическое отталкивание которого создаёт тормозящую силу
По сути, тонкий слой электронного газа, обволакивающий поверхность металла, аналогичен атмосфере Земли, атомы которой тоже не могут уйти в космическое пространство, поскольку для этого необходимо преодолеть земное притяжение, совершив своего рода работу выхода. Скорости атомов меньше первой космической, и, взлетев до некоторой высоты, они возвращаются к поверхности. Лишь у планет с горячей атмосферой или малыми размерами атомы непрестанно утекают в пространство. Подобно концентрации атомов в атмосфере, концентрация электронов падает с удалением от поверхности — по экспоненциальному закону. И лишь редкие высокоскоростные электроны доходят до внешних слоёв электронного облака.
Нагрев металла ускоряет движение электронов, и всё большему их числу удаётся покинуть металл. Так возникает термоэлектронная эмиссия, аналогичная утечке атомов газа из нагретой атмосферы. В случае холодной эмиссии, реализуется иной вид утечки: не от роста скорости частиц электронного газа, а от падения запирающей силы и работы выхода (это соответствует утечке газов с малых планет, не способных удержать атомы своим полем). Ведь, при холодной эмиссии электрон находится не только в запирающем поле электронной атмосферы, но и во внешнем ускоряющем поле