Таким образом, кристаллы, оказывается, тоже характеризуются разной степенью упорядоченности: есть абсолютно жёсткие кристаллы, в которых атомы, словно детальки конструктора, прочно связаны своими формами. К ним относятся наиболее твёрдые и плотные тела, типа алмаза, сапфира, как отмечал ещё Лукреций (§ 4.14). А есть полужёсткие, в которых атомы, хоть и расположены упорядоченно, но оказываются одиночными, связанными нежёстко, подвижно, то разрывая, то образуя связи, а, потому, и двигаясь много быстрей, с большей амплитудой колебаний, как догадался тот же Лукреций, изложивший идеи Демокрита о молекулярной природе теплоты и броуновского движения пылинок (§ 4.16). Такие полужёсткие кристаллы напоминают уже не крепко связанные детали конструктора, а, скорее, — кубик Рубика, который легко деформируется от смещения формирующих его кубиков-атомов. Или же этот кристалл подобен собранному паззлу, который, будучи поднят за край со стола, легко гнётся, поскольку детали в нём, не имея достаточно жёстких связей, вихляются. Существование кристаллических тел с жёстко и нежёстко связанными частицами подтверждается, как раз, поведением их теплоёмкости при изменении температуры. Так, у свинца, образованного слабо связанными атомами и, потому, легко режущегося даже ножом, теплоёмкость остаётся на уровне 3
Эту характерную температуру, ниже которой твёрдые тела "перестают подчиняться классическим законам" и становятся заметны отклонения от
Сказанное в общих чертах верно и для теплоёмкости жидкостей, молекулярные связи в которых возникают и рвутся беспорядочно (§ 4.14). Но и здесь молекулы при соединении могут образовывать сравнительно жёсткие кластеры, "мерцающие", "пульсирующие" микрокристаллы, обнаруженные с помощью рентгенографии, например, — в воде [138]. С повышением температуры процент таких кристаллов уменьшается от разрыва жёстких связей, отчего, по примеру твёрдых тел, теплоёмкость почти всех жидкостей растёт при нагревании, за счёт роста числа независимых частиц и приходящихся на их долю степеней свободы.
Итак, видим, что классическая молекулярно-кинетическая теория объясняет все особенности поведения твёрдых тел, жидкостей и газов, молекул, атомов и ядер. И, более того, классика открывает гораздо более тонкие градации между агрегатными состояниями вещества. Слишком легко уступили учёные давлению модного квантового течения, даже не попробовав истолковать эффекты в рамках классической физики. Кризис физики начала XX в. возник не от классической картины явлений, а от неудачных, неточных моделей, особенно, — моделей атомов и молекул. Большей частью эти модели страдали идеализацией, грубым упрощением. Они описывали предельные случаи и не учитывали ряд атомных свойств и взаимодействий, важных при низких температурах. Если учесть все эти скрытые механизмы, то любые явления удаётся истолковать, применяя классические модели. И самая удачная из них — бипирамидально-сеточная кристалломагнитная модель атома Ритца.
§ 4.17 Неквантовая теория проводимости