Читаем Базы данных: конспект лекций полностью

r4(S4) = r1(S1) x r2(S2) = {t(S1  S2) | t [S1] r1 t(S2) r2}, S1 S2= ;

Теперь рассмотрим пример, чтобы показать, какой вид будет иметь результирующая схема отношения, при применении операции декартового произведения.

Пусть даны два отношения r1(S1) и r2(S2), которые в табличном виде представляются следующим образом:

r1(S1):

r2(S2):

Итак, мы видим, что ни один из кортежей отношений r1(S1) и r2(S2), действительно, не совпадает в их пересечении. Поэтому в результирующее отношение r4(S4) попадут всевозможные пары кортежей первого и второго отношений-операндов. Получится:

r4(S4) = r1(S1) x r2(S2):

Получилась новая схема отношения r4(S4) не «склеиванием» кортежей как в предыдущем случае, а перебором всех возможных различных пар несовпадающих в пересечении исходных схем кортежей.

Снова, как и в случае естественного соединения, приведем схематичный пример работы операции декартового произведения.

Пусть r1 задано следующим условным образом:

А отношение r2 задано:

Тогда их декартовое произведение схематично можно изобразить следующим образом:

Именно таким образом и получается результирующее отношение при применении операции декартового произведения.

<p>3. Свойства бинарных операций</p>

Из приведенных выше определений бинарных операций объединения, пересечения, разности, декартового произведения и естественного соединения следуют свойства.

1. Первое свойство, как и в случае унарных операций, иллюстрирует соотношение мощностей отношений:

1) для операции объединения:

|r1  r2| = |r1| + |r2|;

2) для операции пересечения:

|r1 r2 | =min(|r1|, |r2|);

3) для операции разности:

|r1 \ r2| = |r1|;

4) для операции декартового произведения:

|r1 x r2| = |r1| · |r2|;

5) для операции естественного соединения:

|r1 x r2| = |r1| · |r2|.

Соотношение мощностей, как мы помним, характеризует, как меняется количество кортежей в отношениях после применения той или иной операции. Итак, что мы видим? Мощность объединения двух отношений r1 и r2 меньше суммы мощностей исходных отношений-операндов. Почему это происходит? Все дело в том, что при объединении совпадающие кортежи исчезают, накладываясь друг на друга. Так, обратившись к примеру, который мы рассматривали по прохождении этой операции, можно заметить, что в первом отношении было два кортежа, во втором – три, а в результирующем – четыре, т. е. меньше, чем пять (сумма мощностей отношений-операндов). По совпадающему кортежу {b, 2} эти отношения «склеились».

Мощность результата пересечения двух отношений меньше или равна минимальной мощности исходных отношений-операндов. Обратимся к определению этой операции: в результирующее отношение попадают только те кортежи, которые присутствуют в обоих отношениях исходных. А значит, мощность нового отношения никак не может превышать мощности того отношения-операнда, число кортежей которого наименьшее из двух. А равной этой минимальной мощности мощность результата быть может, так как всегда допускается случай, когда все кортежи отношения с меньшей мощностью совпадают с какими-то кортежами второго отношения-операнда.

В случае операции разности все достаточно тривиально. Действительно, если из первого отношения-операнда «вычесть» все кортежи, присутствующие также во втором отношении, то их количество (а следовательно, мощность) уменьшится. В том случае, если ни один кортеж первого отношения не совпадет ни с одним кортежем отношения второго, т. е. «вычитать» будет нечего, мощность его не уменьшится.

Интересно, что в случае применения операции декартового произведения мощность результирующего отношения в точности равна произведению мощностей двух отношений-операндов. Понятно, что это происходит потому, что в результат записываются все возможные пары кортежей исходных отношений, а ничего не исключается.

И, наконец, операцией естественного соединения получается отношение, мощность которого больше или равна произведения мощностей двух исходных отношений. Опять-таки это происходит потому, что отношения-операнды «склеиваются» по совпадающим кортежам, а несовпадающие – из результата исключаются вовсе.

2. Свойство идемпотентности:

1) для операции объединения: r r = r;

2) для операции пересечения: r r = r;

3) для операции разности: r \ r /= r;

4) для операции декартового произведения (в общем случае, свойство не применимо);

5) для операции естественного соединения: r x r = r.

Интересно, что свойство идемпотентности верно не для всех операций из приведенных, а для операции декартового произведения оно и вовсе не применимо. Действительно, если объединить, пересечь или естественно соединить какое-либо отношение само с собой, оно не изменится. А вот если отнять от отношения точно равное ему отношение, в результате получится пустое отношение.

3. Свойство коммутативности:

Перейти на страницу:

Похожие книги

97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программирование. Принципы и практика использования C++ Исправленное издание
Программирование. Принципы и практика использования C++ Исправленное издание

Специальное издание самой читаемой и содержащей наиболее достоверные сведения книги по C++. Книга написана Бьярне Страуструпом — автором языка программирования C++ — и является каноническим изложением возможностей этого языка. Помимо подробного описания собственно языка, на страницах книги вы найдете доказавшие свою эффективность подходы к решению разнообразных задач проектирования и программирования. Многочисленные примеры демонстрируют как хороший стиль программирования на С-совместимом ядре C++, так и современный -ориентированный подход к созданию программных продуктов. Третье издание бестселлера было существенно переработано автором. Результатом этой переработки стала большая доступность книги для новичков. В то же время, текст обогатился сведениями и методиками программирования, которые могут оказаться полезными даже для многоопытных специалистов по C++. Не обойдены вниманием и нововведения языка: стандартная библиотека шаблонов (STL), пространства имен (namespaces), механизм идентификации типов во время выполнения (RTTI), явные приведения типов (cast-операторы) и другие. Настоящее специальное издание отличается от третьего добавлением двух новых приложений (посвященных локализации и безопасной обработке исключений средствами стандартной библиотеки), довольно многочисленными уточнениями в остальном тексте, а также исправлением множества опечаток. Книга адресована программистам, использующим в своей повседневной работе C++. Она также будет полезна преподавателям, студентам и всем, кто хочет ознакомиться с описанием языка «из первых рук».

Бьерн Страуструп , Бьёрн Страуструп , Валерий Федорович Альмухаметов , Ирина Сергеевна Козлова

Программирование, программы, базы данных / Базы данных / Программирование / Учебная и научная литература / Образование и наука / Книги по IT