Для ознакомления с таким новым для нас понятием, как экспертные системы мы, для начала, пройдемся по истории создания и разработки направления «экспертные системы», а потом определим и само понятие экспертных систем.
В начале 80-х гг. XX в. в исследованиях по созданию искусственного интеллекта сформировалось новое самостоятельное направление, получившее название экспертных систем. Цель этих новых исследований по экспертным системам состоит в разработке специальных программ, предназначенных для решения особых видов задач. Что это за особый вид задач, потребовавший создания целой новой инженерии знаний? К этому особому виду задач могут быть отнесены задачи из абсолютно любой предметной области. Главное, что отличает их от задач обычных, – это то, что человеку-эксперту решить их представляется очень сложным заданием. Тогда и была разработана первая так называемая экспертная система (где в роли эксперта выступал уже не человек, а машина), причем экспертная система получает результаты, не уступающие по качеству и эффективности решениям, получаемым обычным человеком – экспертом. Результаты работы экспертных систем могут быть объяснены пользователю на очень высоком уровне. Данное качество экспертных систем обеспечивается их способностью рассуждать о собственных знаниях и выводах. Экспертные системы вполне могут пополнять собственные знания в процессе взаимодействия с экспертом. Таким образом, их можно с полной уверенностью ставить в один ряд с вполне оформившимся искусственным интеллектом.
Исследователи в области экспертных систем для названия своей дисциплины часто используют также уже упоминавшийся ранее термин «инженерия знаний», введенный немецким ученым Е. Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов».
Однако коммерческие успехи к фирмам-разработчикам пришла не сразу. На протяжении четверти века в период с 1960 по 1985 гг. успехи искусственного интеллекта касались в основном исследовательских разработок. Тем не менее, начиная примерно с 1985 г., а в массовом масштабе с 1987 по 1990 гг. экспертные системы стали активно использоваться в коммерческих приложениях.
Заслуги экспертных систем довольно велики и состоят в следующем:
1) технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на персональных компьютерах, решение которых приносит значительный экономический эффект и существенно упрощает все связанные с ними процессы;
2) технология экспертных систем является одним из самых важных средств в решении глобальных проблем традиционного программирования, таких как продолжительность, качество и, следовательно, высокая стоимость разработки сложных приложений, вследствие которой значительно снижался экономический эффект;
3) имеется высокая стоимость эксплуатации и обслуживания сложных систем, которая зачастую в несколько раз превосходит стоимость самой разработки, а также низкий уровень повторной используемости программ и т. п.;
4) объединение технологии экспертных систем с технологией традиционного программирования добавляет новые качества к программным продуктам за счет, во-первых, обеспечения динамичной модификации приложений рядовым пользователем, а не программистом; во-вторых, большей «прозрачности» приложения, лучшей графики, интерфейса и взаимодействия экспертных систем.
По мнению рядовых пользователей и ведущих специалистов, в недалекой перспективе экспертные системы найдут следующее применение:
1) экспертные системы будут играть ведущую роль на всех стадиях проектирования, разработки, производства, распределения, отладки, контроля и оказания услуг;
2) технология экспертных систем, получившая широкое коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.
В общем случае экспертные системы предназначены для так называемых неформализованных задач, т. е. экспертные системы не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач, но дополняют их, тем самым значительно расширяя возможности. Именно этого и не может сделать простой человек-эксперт.
Такие сложные неформализованные задачи характеризуются:
1) ошибочностью, неточностью, неоднозначностью, а также неполнотой и противоречивостью исходных данных;
2) ошибочностью, неоднозначностью, неточностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
3) большой размерностью пространства решений конкретной задачи;
4) динамической изменчивостью данных и знаний непосредственно в процессе решения такой неформализованной задачи.
Бьерн Страуструп , Бьёрн Страуструп , Валерий Федорович Альмухаметов , Ирина Сергеевна Козлова
Программирование, программы, базы данных / Базы данных / Программирование / Учебная и научная литература / Образование и наука / Книги по IT