Читаем Бег за бесконечностью полностью

С точки зрения квантовой механики наша ошибка заключена уже в самой постановке задачи — электрону не следовало заранее приписывать свойство «обладать одновременно точным значением координаты и точным значением импульса» Это просто неоправданное распространение классических представлений из привычного для нас мира больших и тяжелых тел на ту область, где они неприменимы

Таковы основные сложности, подстерегающие всех, кто пытается получить полезную информацию об устройстве микромира. Однако если трудности в создании приборов преодолены, а квантовомеханические тонкости учтены, остается главный вопрос, как пробиться к очень малым расстояниям'

Очевидный путь связан с получением все меньших и меньших длин воли, разумеется, не только световых, но и дебройлевских волн любых элементарных частиц, фактически же, поскольку дебройлевская длина волны обратно пропорциональна импульсу частицы, следует создавать пучки частиц, обладающих все более высоким импульсом. Следовательно, тайны сверхмалых расстояний могут раскрыться только перед теми, кто сумеет использовать в своих экспериментах частицы с достаточно высокими энергиями Прорыв к малым и сверхмалым пространственным областям — бесспорно, достойная цель и одна из главнейших причин упомянутой выше «филологической метаморфозы» Однако за такой формулировкой задачи кроется на самом деле более глубокое содержание.

Внутренность пустой коробки, очень большой или очень малой, вряд ли может кого-нибудь заинтересовать Точно так же, для нас важны не впечатляющие пространственные размеры вблизи краев рассмотренного диапазона — 10–15 или 1028 сантиметров, — а те объекты и процессы, которые «за ними скрываются» Нам необходимо выяснить, не существуют ли за последней достигнутой пока ступенькой великой иерархической лестницы под названием «элементарные частицы» какие-то новые ступени, где еще не отпечатаны следы «всепроникающих человеческих башмаков». Не отыщутся ли там какие-то неведомые субэлементарные объекты, из которых на самом деле выстроены все известные сейчас частицы?

Весь исторический опыт, накопленный физиками, вроде бы выступает за положительный ответ. Ведь до сих пор в процессе исследования структуры вещества неизменно обнаруживался долгожданный следующий уровень строения. Действительно, составные объекты — очень частое явление. Под ними можно понимать совокупность каких-то иных, более простых объектов, называемых частями, которые связаны между собой определенными силами. Кусок железа, притянутый магнитом, — хороший пример типично составного объекта. Если мы заранее договоримся, что на расстоянии, скажем, одного метра друг от друга взаимодействием магнита с куском железа можно пренебречь, то, измеряя усилие, которое необходимо приложить для их разделения, предположим, оно оказалось равным 1 кГ (килограмм силы), мы без труда вычислим работу, затраченную на превращение одного составного объекта в две независимые части: в данном случае эта работа составляет один килограммометр (по-другому она называется энергией связи).

Энергия связи — чрезвычайно важное понятие в микромире. Чтобы ионизировать атом, необходимо совершить работу по удалению электрона на достаточно большое расстояние от атомного ядра. Такую работу способен проделать, например, фотон, энергия которого превышает энергию связи электрона в атоме. Именно этот механизм и лежит в основе фотоэлектрического эффекта.

Понятие энергии связи пронизывает буквально все наши представления о структуре вещества. Вот перед нами знаменитая цепочка — четыре обычных состояния вещества: твердое тело, жидкость, газ, плазма.

В твердом теле связи между атомами наиболее сильны, они образуют как бы жесткую сетку.

При нагревании эти связи начинают разрушаться — с ростом температуры атомы приобретают все большие кинетические энергии. Вещество переходит в жидкую фазу, жесткая сетка связей сохраняется лишь местами, во всяком случае, ее обычно не хватает для того, чтобы тело самостоятельно поддерживало прежнюю форму.

При еще более сильном нагревании практически все атомы приобретают достаточно большие кинетические энергии для преодоления энергии межатомных связей, вещество становится газообразным.

И наконец, дальнейший нагрев начинает разрушать внутриатомные связи. Электроны отрываются от ядер, возникает своеобразная горячая смесь из электронов и положительно заряженных ионов, называемая плазмой.

Перейти на страницу:

Похожие книги

Россия за Сталина! 60 лет без Вождя
Россия за Сталина! 60 лет без Вождя

К 60-летию гибели И. В. Сталина! НОВАЯ КНИГА ведущего историка патриотических сил, ни единым словом не повторяющая его бестселлеры «Зачем убили Сталина» и «Имя России – Сталин». Полная и окончательная реабилитация Вождя.«Я знаю, что после моей смерти на мою могилу нанесут кучу мусора, но ветер истории безжалостно развеет ее!» Через 60 лет после убийства Сталина понимаешь, насколько же он был прав. Несмотря на истерику «либеральных» иуд и истошный вой кремлевской пропаганды, всё больше граждан России оценивает роль Иосифа Виссарионовича в истории как исключительно положительную, считая его не «тираном», «палачом» и «мясником», якобы «заваливавшим врага трупами», а лучшим полководцем Второй Мировой, величайшим государственным деятелем ХХ века, гениальным творцом-созидателем и спасителем Отечества, который однажды уже превратил отсталую, нищую, разграбленную страну в Сверхдержаву и мог бы совершить это снова. Участвуй он сегодня в выборах – Сталин получил бы больше голосов, чем все остальные кандидаты, вместе взятые! Сравните этого титана власти с нынешними политическими пигмеями, а могучий сталинский СССР 60-летней давности с жалкой РФ, превратившейся в сырьевую колонию Запада, – и решайте сами, за кем будущее и кто заслуживает вечной памяти!

Сергей Кремлев , Сергей Кремлёв

Биографии и Мемуары / История / Прочая научная литература / Образование и наука