Читаем Бег за бесконечностью полностью

Огромное преимущество такого подхода перед так называемой «старой квантовой механикой» заключалось в построении ясного и предельно общего метода решения любой задачи о поведении микрочастиц. Этот метод был основан на знаменитом уравнении Шредингера для дебройлевских волн. Это уравнение связывало всякое изменение волны во времени с энергией частицы, с которой сопоставлена эта волна. Достаточно было только выяснить вид потенциальной энергии взаимодействия двух или нескольких частиц и ввести эту функцию в уравнение — дальше возникала чисто математическая (лишь в редких случаях — простая!) проблема. На основе такого метода практически все задачи, которые с великими трудностями и не менее великим искусством решали создатели старой квантовой механики, в первую очередь Н. Бор и его ученики, становились едва ли не упражнениями для студентов (сейчас они входят в программу III–IV курсов университета!). Но не менее важно и то, что был расчищен путь к задачам, о которых раньше и мечтать не смели.

Отдавая должное замечательным качествам волновой механики, Н. Бор и многие другие физики непрерывно полемизировали с Э. Шредингером по поводу трактовки волновой функции, для определения которой и было написано «всемогущее» уравнение.

Особую остроту этим спорам придавала та позиция, которую твердо занял Э. Шредингер. Он оказался, как говорится, «еще большим католиком, чем сам папа римский» и выдвинул идею, что в природе нет ничего, кроме волн! Это был существенный шаг за рамки исходной дебройлевской гипотезы. Никаких частиц на самом деле нет, утверждал австрийский физик, о них можно говорить лишь приближенно, с точки зрения классической физики, а для волновой механики этот образ совершенно лишен смысла!

Э. Шредингер полагал, что волновая функция описывает реальный волновой процесс в пространстве подобно тому, как формулы напряженности полей описывают электромагнитные волны. Если же концентрация дебройлевских волн в некоторой малой области пространства очень велика, то возникает «нечто», напоминающее частицу в обычном классическом понимании этого слова, — своеобразный волновой сгусток, ведущий себя как частица.

Дискуссия по этому поводу затронула практически всех крупнейших физиков того времени, и большинство из них не согласилось с чисто волновой концепцией электрона, считая, что частицы так или иначе должны остаться частицами. Однако сохранять корпускулярные представления стало тоже далеко не простым делом, и решение проблемы было найдено на весьма оригинальном и неожиданном пути.

В 1927 году один из лидеров «квантовой революции», М. Борн, прославившийся рядом глубоких работ в различных разделах теоретической физики, рассматривал задачу о рассеянии электронов с помощью уравнения Шредингера. Получив формальное решение, он приступил к анализу едва ли не самого сложного вопроса: что же скрывается за красивыми математическими выражениями волновой теории? М. Борн старался взглянуть на постановку задачи и на конечный результат глазами экспериментатора. Независимо от того, что теоретики «измыслили» волновое уравнение и стараются ограничить себя только волновыми представлениями, рассуждал он, экспериментаторы всегда говорят о потоке частиц, о регистрации частиц… Может быть, это лишь вопрос удобства тех или иных слов? Может быть, люди, занятые постановкой опытов, просто не склонны к более глубокому постижению законов природы и абстрактному волновому подходу?



Нет, продолжал он, надежда на «близорукость» экспериментаторов ничем не оправдана, скорее наоборот, волновая теория не дает ясного ответа на вопрос, откуда берутся мельчайшие частицы вещества, занимающие чрезвычайно малый объем пространства. Ведь именно с ними приходится иметь дело в реальных опытах! А все слова о том, что вместо всамделишных частиц наблюдаются какие-то концентрированные волновые образования, пока не имеют под собой серьезных теоретических и экспериментальных оснований. Поэтому необходимо найти такую трактовку волновой функции, которая позволила бы, с одной стороны, сохранить естественное представление о частицах, а с другой — объяснить своеобразные волновые закономерности в распределениях этих же частиц, получающихся, скажем, при исследовании рассеяния.

Исходя из таких соображений, М. Борн пришел к поразительному заключению. Оказалось, что все становится на свои места, если считать, что волновая функция характеризует вероятность того или иного состояния реальной частицы или совокупности частиц, а вовсе не какую-то реальность типа электромагнитной волны. Точнее говоря, квадрат модуля волновой функции описывает распределение вероятности определенного состояния частицы, например, ее положения в пространстве.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука