Читаем Бег за бесконечностью полностью

На первый взгляд борновская идея удивительно проста. Представим себе источник частиц, например, тех же электронов, из которого обстреливается некоторая мишень-рассеиватель, состоящая из таких же электронов и атомных ядер. За рассеивателем перпендикулярно к направлению движения пучка электронов расположен экран, реагирующий на попадание частицы слабой вспышкой света, как говорят физики — сцинтилляцией. Если источник начнет работать в одиночном режиме, то есть электроны будут выпускаться по одному, то в разных точках экрана через определенные промежутки времени будут регистрироваться отдельные вспышки, свидетельствующие о попадании отдельных частиц. Если переключить источник на генерацию интенсивного пучка электронов, то на экране появится плотное распределение вспышек. Эта картина напоминает известное распределение света, рассеянного на некотором препятствии. Итак, в первом случае электроны ведут себя как обычные частицы, а во втором демонстрируют типично волновые свойства.

Проведем теперь следующий важный эксперимент, заменив сослуживший свою службу экран специальными чувствительными фотопластинками. На первую пластинку запустим интенсивный пучок электронов — на ней должна образоваться та же волновая картина, которая была видна в аналогичной ситуации и на сцинтиллирующем экране. Сменив пластинку, включим источник в одиночный режим, и пусть установка поработает некоторое время, набирая события.

Если экспозиция была достаточно длительной, то и на второй пластинке постепенно сформируется совершенно такая же картина, как и на первой.

Теперь пора делать некоторые выводы. Во-первых, волновые свойства никак не проявлялись в каждом отдельно взятом электроне. Зато они немедленно сказываются, как только электроны соберутся в большой коллектив, то есть мы наблюдаем волновую картину для распределения большого числа событий-вспышек на сцинтиллирующем экране. Во-вторых, волновая картина не зависит от того, произошли ли все события-вспышки одновременно после запуска на экран интенсивного потока электронов, или накапливались постепенно на фотопластинке при работе источника в одиночном режиме. Как же следует трактовать получившиеся распределения с точки зрения теории?

Прежде всего отметим, что уравнение Шредингера не дает никаких предсказаний о том, в какую конкретную точку попадет электрон. Тут царит чистая случайность — каждый электрон может, испытав взаимодействие с рассеивателем-мишенью, оказаться в любой точке фотопластинки, и, как мы убедимся немного позже, не существует средств, позволяющих сделать его судьбу более определенной. Но при регистрации большого потока частиц оказывается, что одни участки фотопластинки засвечены сильнее, а другие — слабее, то есть на первые участки электроны попадают чаще, чем на вторые. Это и приводит в конце концов к наблюдаемому неравномерному распределению, причем интенсивность засветки в каждой точке пластинки пропорциональна частоте попадания туда отдельных частиц. Если теперь принять полную интенсивность засветки всего экрана за единицу, то доля вспышек, приходящихся на одну точку, или, как говорят физики, относительная частота попадания, определит нам вероятность того, что любой отдельно выпущенный электрон окажется в конкретной точке экрана.

Попробуем немного изменить условия опыта и поместим между источником и регистрирующей частью (экраном или фотопластинкой) мишень из другого вещества. Картина распределения изменится; ведь электроны, вылетающие из источника, взаимодействуют теперь с другими атомами, однако принцип ее формирования останется прежним. Следовательно, распределения рассеянных электронов несут сведения о том, с каким веществом происходит взаимодействие. Речь опять-таки идет о вероятностной характеристике — разные атомы, на которых рассеиваются электроны, отбрасывают их в одну и ту же точку экрана с различной вероятностью.

Разумеется, результат любого такого опыта можно рассчитать заранее, решая уравнение Шредингера.

Таким образом, дебройлевские волны оказались лишь удобным вспомогательным приемом для вывода вероятностных характеристик поведения частиц в различных процессах. Такая точка зрения М. Борна, возможно, и не вызвала бы сильного потока споров, несмотря на чрезвычайную оригинальность. Более того, научная общественность с безусловным восторгом приняла бы ее в качестве временной меры спасения волновой механики, тем более что интерпретация, которой придерживался Э. Шредингер, была слишком уязвимой. Но ведь М. Борн настаивал на том, что вероятностные закономерности носят принципиальный характер и составляют суть квантовой теории.

Чтобы постичь преобразующую роль его позиции, следует обратить внимание вот на какие обстоятельства. Вероятностная точка зрения была известна и классической науке. Со случайными явлениями люди сталкивались и сталкиваются в самых разных областях практической деятельности.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука