Самый блистательный (и в прямом, и в переносном смысле!) результат аккреции водорода на углеродно-кислородный белый карлик — вспышка сверхновой. Согласно стандартному сценарию (а есть и другие), она происходит, когда приток аккрецируемого вещества доводит массу карлика-акцептора до предела Чандрасекара. Поскольку в этом случае давление вырожденного электронного газа уже не способно противостоять гравитации, карлик сжимается примерно втрое, а температура его центральной зоны резко возрастает. По достижении 400 млн K начинается термоядерное горение углерода, которое дополнительно нагревает ядро. Поскольку давление вырожденного газа при этом не увеличивается (оно не зависит от температуры!), ядро не расширяется и, следовательно, не охлаждается. Это приводит к катастрофическому росту темпа термоядерных реакций, которые за доли секунды порождают все более тяжелые элементы вплоть до радиоактивного никеля. Фронт термоядерного горения движется от ядра карлика к поверхности, скорее всего, сначала с дозвуковой, а затем и со сверхзвуковой скоростью, карлик взрывается и разбрасывает все новосинтезированное вещество по окружающему пространству.
Поскольку углеродно-кислородный карлик не имеет водорода и его линии отсутствуют в спектре излучения сверхновой, ее относят к первому типу, а конкретно — к подтипу Ia. Напротив, подтипы Ib и Ic — бедные водородом коллапсирующие сверхновые (сверхновым Ic не хватает еще и гелия). Принято считать, что они лишились внешних слоев еще до взрыва, что и объясняет их спектральные аномалии.
Сверхновые подтипа Ia (SN Ia) очень эффектны. Выброшенный в пространство никель-56 дает начало радиоактивному изотопу кобальта с таким же атомным весом, а тот — стабильному изотопу железа. Распад ядер никеля и кобальта сопровождается гамма-излучением, которое нагревает остатки взорвавшейся звезды и заставляет их интенсивно светиться в рентгеновском и видимом диапазонах.
SN Ia обладают замечательной особенностью, за которую их обожают и астрономы, и космологи. Эти звезды прекрасно работают в качестве так называемых стандартных свечей. У них примерно одинаковая пиковая светимость, в 4 млрд раз превышающая солнечную. Ее постоянство не абсолютно, однако отклонения от среднего уровня не превышают 20–30 % и без особых проблем поддаются учету. Поэтому наблюдение таких сверхновых сыграло первостепенную роль в состоявшемся два десятилетия назад открытии ускоренного расширения Вселенной. Но это уже совсем другая история, которая будет рассказана позже.
Есть и альтернативные объяснения природы сверхновых. Не исключено, что они вспыхивают и в звездных парах, состоящих из двух белых карликов. При вращении вокруг общего центра инерции они излучают гравитационные волны, теряют кинетическую энергию, сближаются и, в конце концов, сталкиваются и сливаются. Результаты таких слияний описываются множеством моделей. Некоторые сценарии именно таким образом объясняют взрывы сверхновых типа Ia — иногда с задержкой на тысячи и десятки тысяч лет, а иногда практически сразу после столкновения. Споры на эту тему идут уже лет пятнадцать, и конца им не видно.
19. Кристалл величиной с Землю
Итак, все белые карлики обречены на постепенное остывание, однако они расстаются с теплом намного сложнее, чем раскаленный кусок железа. На охлаждение белого карлика влияет множество физических процессов в ядре и плазменной оболочке. Один из них, и вероятно, самый парадоксальный, был впервые предсказан в двух статьях, опубликованных в 1960 г. в «Журнале экспериментальной и теоретической физики». Первую работу «Внутренняя структура сверхплотных звезд» еще в августе 1959 г. представил в редакцию сотрудник теоретического отдела ФИАН имени Лебедева Давид Абрамович Киржниц. Вторая статья «Некоторые свойства сильно сжатого вещества» появилась за подписью ученика великого Ландау и тоже будущего лауреата Нобелевской премии Алексея Алексеевича Абрикосова, работавшего в те времена в Институте физических проблем. К аналогичным выводам годом позже пришел Эдвин Солпитер, чье имя уже встречалось в связи с обсуждением звездного нуклеосинтеза.
Вслед за этими исследованиями появились новые модели белых карликов, учитывавшие большее число факторов, нежели модель Чандрасекара. Например, Солпитер и Хамада показали, что численная величина предела Чандрасекара меняется (в среднем примерно на 10 %) в зависимости от химического состава белого карлика[26]
. Так, если бы ядро белого карлика состояло из чистого углерода, он был бы обречен на гравитационный коллапс при массе, чуть меньшей 1,4 солнечной. Для чисто железного белого карлика предел Чандрасекара оказался бы еще меньше — 1,1 массы Солнца. Конечно, эти случаи нефизичны в том смысле, что белых карликов ни в чисто углеродном, ни тем более в железном виде просто не существует. Однако в теоретическом плане результаты Хамады и Солпитера оказались очень глубокими и значительно повлияли на дальнейший прогресс теории белых карликов.Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное