Читаем Беседы о рентгеновских лучах (второе издание) полностью

Если взглянуть на проявленною и закрепленную пластинку невооруженным глазом, можно подумать, что она испорчена. Никакого изображения, сплошная черная вуаль. Но под микроскопом виден правильный узор из светлых и темных извилистых полосок. Это результат интерференции: волны, отброшенные объектом и зеркалом, складывались и вычитались, где-то усиливая, а где-то гася друг друга. Возник черно-белый орнамент. Если теперь пропустить через него свет от того же источника, перед нами появится долгожданное изображение, притом не плоскостное, а трехмерное.

Следует добавить, что источник этот лазер.

Именно он, по сути, сделал возможной голографию.

Сыграли роль важные его особенности, которые нам уже известны. В отличие от обычной лампы-вспышки или солнца он дает не пеструю смесь разных по частоте и другим характеристикам электромагнитных колебаний, а единую, как на подбор, череду равновеликих волн, или, если угодно, однокалиберных квантов, выдерживающих геометрическую правильность своих плотно сомкнутых колонн и шеренг. Именно это помогает формированию идеальной интерференционной картины.

Голограмму можно получить и в рентгеновских лучах. Если потом пропустить через нее видимый свет, то изображение окажется крупнее, притом во столько раз, во сколько одна волна длиннее другой (световая рентгеновской) — Первые же попытки принесли обнадеживающие результаты. В 1964 году изготовили таким способом фотографию мушиного крылышка; увеличение оказалось 150-кратным. Ее качество превзошло все ожидания: ведь это была стадия первых проб.

Новая «сверхлупа» совершенствуется. Она позволит разглядеть мельчайшие детали наших органов. Представьте: кровеносный сосудик сердца или мозга, увеличенный в сотни раз! Притом в объемном изображении на экране стереотелевизора перед глазами врачей, ставящих диагноз за тридевять земель от пациента. И друг от друга. Да, на такой заочный консилиум можно созвать лучших специалистов, находящихся в разных уголках страны, даже за рубежом.

Здесь, пожалуй, пора «открыть карты». В конце раздела «Организм в качестве сигнала» Н. Винер признается, что вопрос, как «телеграфировать человека», рассматривает сугубо теоретически. И главным образом для того, чтобы читатель лучше понял автора: в основе сообщения — передача сигналов, которую вовсе не обязательно связывать с передвижением человеческих тел.

Ибо в принципе возможна транспортировка идей, а не людей, даже в том случае, когда кажется совершенно необходимым заполучить ту или иную персону. Любой индивидуум может быть, вообще говоря, достойно представлен исчерпывающей информацией о нем, которая заменит его в назначенном месте в назначенное время.

Пусть и нам послужит подобный прием фантастического эскиза. Он наглядней проиллюстрирует мысль о том, как раздвинулись пределы познания, когда искусственные датчики информации добавились к естественным. А это имеет не только теоретическое, но и практическое значение; понятно, почему речь зашла о консилиуме диагностов.

Человек, да и вообще организм тут лишь один из примеров; можно было бы взять и другой объект.

Но раз уж мы взяли себя, вернемся к собственной развертке. Конечно, технически она нереальна, по крайней мере сегодня Как отмечал сам Н. Винер, одна только зародышевая клетка, с которой начинается наш организм, содержит такое количество наследственной информации, которое больше, чем объем сведений во всей многотомной Британской энциклопедии. Между тем в процессе деления, когда из этой единственной клетки получаются сперва две, потом из двух — четыре, восемь, шестнадцать, тысяча, миллион и так далее, они постепенно дифференцируются, специализируются.

Одни становятся нервными, другие — мышечными, третьи — костными…

Построчная развертка взрослого организма подразумевает считывание информации лучами, прощупывающими всю его микроструктуру. Но не разрушат ли они молекулы, клетки, ткани? Попробуем разобраться, памятуя, что наша цель — не расшифровка некоего мистера Икс для передачи телеграммой, а экскурсия в мир невидимого, освещенный незримыми икс-лучами.

Так вот, с их помощью мы можем детально рассмотреть не только ткани, но даже самую маленькую из 50 триллионов клеток нашего тела. Ее поперечник несколько микронов (теперь, правда, эти единицы называются иначе: микрометр, что значит 10-6 метра, а в удобной для нас размерности- 10-4 сантиметра).

Здесь можно использовать рентгеновский микроскоп.

Он увеличивает в 100 тысяч раз. И позволяет разглядеть довольно мелкие детали — габаритами до 10-6 сантиметра. Конечно, разрешающая сила электронного микроскопа, который к тому же дает большее увеличение (в полмиллиона раз) еще выше (в десятки раз).

Но электронный луч разрушает живое. А рентгеновский нет.

Шагнем еще на ступеньку ниже. Заглянем в красное кровяное тельце диаметром около 5·10-4 сантиметра.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука