Красное оно потому, что содержит гемоглобин. Сколько молекул этого белка в одном таком крохотном шарике — эритроците? Оказывается, 280 миллионов. Каждая состоит из 10 тысяч атомов, как бы нанизанных на длиннейшую нить, словно бусинки ожерелья, причем вся цепочка спутана в клубок. Узнать ее строение помог рентгеноструктурный анализ. Именно он наряду с электронографией играет главную роль там, где нужно найти расположение атомов в молекуле и даже расстояния между ними. А можно ли «потрогать» каждый из них, «до последнего винтика конструкции»?
Мы помним, что всепроникающее излучение — одновременно ионизирующее. Этим оно отличается от радиоволнового и от инфракрасного, которые тоже, в общем-то, внедряются в организм, но неглубоко. Главное же, оба они ограничиваются тем лишь, что раскачивают молекулы, вызывая ощущение тепла.
Иначе ведет себя видимая радиация, которая не проходит сквозь кожные покровы. Когда она падает на нас — от солнца ли, от лазера или лампы, — мы ее рассеиваем в разные стороны. А что это значит в микромасштабах? Вот что: отдельные ее порции поглощаются какими-то из наших электронов, которые тем самым немедленно возбуждаются и тут же выбрасывают ее, переходя в прежнее состояние. Освободившись, этот квант изменяет направление движения по сравнению с первоначальным. Но и только. Частоту свою он сохраняет той же, что и до «пленения».
Точно так же поступает и ультрафиолет. Правда, он несколько агрессивнее, что любители солнечных ванн неоднократно испытали, как говорится, на собственный шкуре. Он способен нарушать химические связи в молекулах. И вышибать электроны из атомов, расположенных на поверхности материала.
А рентгеновский квант, который куда мощнее? Угодив в электрон, он тоже может передать ему свою энергию целиком и выбить его «из седла». Происходит ионизация, причем не только в тонких наружных слоях., но и глубоко внутри любых веществ и существ. Этот механизм взаимодействия доминирует, если излучение мягкое. А если более жесткое? Оно способно рассеиваться на свободных электронах: его кванты, теряя часть своей энергии, изменяют направление полета.
В последнем случае перед нами уже не
Именно в этом феномене впервые во всей полноте проявились корпускулярность электромагнитных колебаний. Похоже, будто взаимодействуют не волна и частица, а две корпускулы, сталкиваясь, как движущийся бильярдный шар с покоящимся.
В реальных условиях эффект Комптона нередко наблюдается и тогда, когда электроны не свободны, а связаны в атоме. Мощные сгустки электромагнитной энергии вышибают их оттуда вон. Происходит опять-таки ионизация, притом еще более глубокая.
Как видно, опасения Н. Винера вполне резонны.
«Прочитать человека» построчно, словно книгу, означало бы внести массу «опечаток», не говоря уж о том, что «развертка мистера Икс в телеграмму» была бы равносильна перепечатке (и порче) триллионов британских энциклопедий.
Что же касается возможности воссоздать двойника, то она не утопия. Только достигается это иным путем.
Опять на грани фантастики: о массовом копировании людей, о 37 миллионах Ньютонов, а также о радиационной генетике и селекции — об итогах и перспективах, которые во многом обязаны своим появлением использованию рентгеновских лучей
— Неужели можно воссоздать двойника?
— Да. Представьте: из одной-единственной клетки, отторгнутой от вашего тела и помещенной в естественную или искусственную «биологическую колыбель», вырастает ваш «альтер эго» («другой „я“»), полностью повторяющий вас и, разумеется, ваши таланты. Вы оба окажетесь абсолютными близнецами, разве только не одного возраста: разница может составлять многие годы. Так любую редкостную одаренность удалось бы сделать бессмертной. Можно вообразить такое переиздание не в одном экземпляре, а массовым тиражом.
— Опять на грани фантастики!
— Что попишешь, такова сегодня наука. И стать ей фантастичной помогли рентгеновские лучи.