Читаем Беседы о Третьем Элементе полностью

Цветное зрение у наших предков было построено заново после того, как динозавры закончили слой славный путь на Земле и некоторым млекопитающим, к примеру, приматам, поселившимся на деревьях, открылась дорога в царство света, зелени, бананов и дня. Цветное зрение позволяет получать больше информации, чем черно-белое, потому что дает возможность различать объекты по длине волны отражаемых ими лучей. Мы легко выделяем желтый банан или желтую древесную змею на фоне зеленой листвы, при том, что они имеют ту же яркость отражаемого света.

Чтобы реализовать цветное зрение, эволюция вернула в рецепторный слой сетчатки колбочки, которые ранее, в изобилии, уже имелись у рыб и рептилий, а также неизмеримо более разнообразны у наших первичноротых братьев. К примеру, у раков-богомолов обнаружено свыше 12 типов цветовых рецепторов против наших трех.

У предков обезьян сначала появилась возможность видеть два цвета, синий и зеленый. Потом у узконосых обезьян Африки, наших предков, путем мутации зеленого йодопсина, добавился красный. Он же появился и у широконосых обезьян Южной Америки, но как-то криво: у половины особей — зеленый, у половины — красный, но не одновременно. Часть особей из вида Homo Sapience, в основном самочки, приобрели даже свойство тетрахроматизма, то есть научились различать еще и четвертый цвет. Но, как они его воспринимают на субъективном психическом уровне, изучено плохо.

Получив цветное зрение, мы, на ярком свету, имеем возможность наслаждаться красивыми картинками и сильно выиграли в резкости и четкости изображения. Но в сумерках опять возвращаемся в Мезозой и теряем способность различать цвета, зато имеем некоторый шанс вовремя отличить тиранозавра от пригнувшейся секвойи.

Чтобы полноценно раскрыть природу цвета, нам следует сначала поговорить об его физическом феномене и затем символической субъективной сути. Для понимания физической природы цвета нам придется на короткое время вернуться на Светлую сторону. В физической реальности цвет — это свойство света, связанное с длиной волны светового излучения. Пока мне удавалось уходить от подробностей о природе света, но пришло время коснуться этого глубже.

Свет — это форма излучения энергии, проявляющаяся в виде быстро меняющих друг друга электрических и магнитных полей (электромагнитное излучение). В зависимости от того, какие свойства света мы хотим изучить в конкретном испытании, световое излучение может проявляться перед нами либо как частица, либо как волна, то есть демонстрировать свою двойственную природу или корпускулярно-волновой дуализм.

В экспериментах, в которых мы хотим проверить, является ли свет волной, он охотно показывает нам свои волновые свойства. К примеру, огибает препятствия и при накладывании двух синхронизированных по фазе световых волн друг на друга дает полосы света и тьмы или интерференционную картину.

Ниже вы можете глянуть на картинку из Википедии, где изображен, впервые проведенный Томасом Юнгом в 1801 году двухщелевой эксперимент.[14] В нем мы наблюдаем чередующиеся полосы света и тьмы при наложении вершин и гребней волн света от двух источников.

Исследуя расстояния между полосами света и тьмы, мы можем измерить расстояние между гребнями световых волн, то есть длину волны световых колебаний. В области видимого нами света она находится приблизительно между 380 и 740 нанометрами. Более длинные волны, инфракрасное излучение, мы можем ощущать кожей, например, в случае с теплом от печки, а более короткие, ультрафиолетовые, — как ожог после длительного пребывания на солнце. Но глаз эти волны не видит.

Цвет — это способ, которым наша система зрительного восприятия кодирует различия в длинах волн для своего внутреннего пользования, в частности для передачи информации. Но в физической реальности это электромагнитное излучение никак не окрашено.

Наряду с волновой природой свет проявляет и корпускулярную, то есть ведет себя как частица. Снежинки при допустимых в земной атмосфере скоростях снежной бури никогда не сокрушат ветровое стекло автомобиля, потому что у каждой отдельной снежинки на это не хватит энергии. А вот достаточно крупный град на это способен.

Так вот, световая волна при взаимодействии с веществом ведет себя как рой снежинок или градинок, ударяющих в ветровое стекло. Чем меньше длина волны, тем больше энергия световой частицы. Свет из красной части спектра не сможет выбить электрон из металла под названием «рубидий», для этого нужно излучение потяжелее, как минимум с длиной волны 573 нанометра (из желтой части спектра). Чем короче длина волны и выше ее частота, тем тяжелее градина света и тем более мощную преграду она может сокрушить. В физике этот феномен называется фотоэффектом и его открытие привело к возникновению квантовой механики.

Перейти на страницу:

Похожие книги