Читаем Беседы об атомном ядре полностью

Весь германиевый кристалл постоянно находится в электрическом поле. Когда через цилиндрик пролетает ионизирующая частица, на ее пути возникают свободные электроны, вырванные из кристаллической решетки, и оставшиеся в ней положительно заряженные «дырки». Под воздействием электрического поля и те и другие быстро перемещаются к электродам, которые отвечают на их появление электрическим сигналом.

Высокая плотность вещества полупроводникового счетчика и очень малая энергия ионизации, в десять раз меньшая, чем та, которая требуется для ионизации, например, в газе, делают его просто незаменимым для измерения энергии рентгеновского излучения.

Надо сказать, что точно такую же аппаратуру и те же мезоатомы ученые используют теперь и для других целей. Например, для изучения изменений химического состава в живых организмах. Мезорентгеновский свет со своими спектральными линиями так же специфичен для каждого химического элемента, как и обычный.

Живое и неживое состоит из одного и того же стандартного набора элементов. И вполне закономерно, что результаты исследований физиков в мире атомов находят применение в биологии и медицине. Облучение мю-мезонами позволяет при минимально возможном радиационном воздействии на человека проводить химический экспресс-анализ для медицинской диагностики.

Во многих институтах мира сейчас строятся, а в некоторых уже и работают ускорители, предназначенные не для достижения рекордных энергий ускорения протонов, а для получения рекордных по интенсивности пучков пи- и мю-мезонов. Они так и называются «мезонные фабрики». Большая интенсивность мезонного пучка поможет экспериментаторам достичь более высокой ступени точности измерения и энергии мезорентгеновского излучения.

Жизнь идет вперед. И то, что вчера казалось наивысшим достижением, сегодня уже теряет какую-то часть своих достоинств. Германиевый детектор, несмотря на свои превосходные качества, практически достиг потолка точности. Возникла новая идея — использовать на ускорителях совершенно иной способ измерения энергии рентгеновских квантов, способ, при котором экспериментаторы, как бы забывая об энергии, занимаются только прецизионным измерением угла рассеяния этих квантов от плоскости кристаллической решетки.

Какое же отношение имеет кристаллическая решетка к энергии мезорентгеновского излучения?

На первый взгляд никакого. Но физики, изучающие свойства обычных атомов, давно применяют для исследования атомных спектров кристалл-диффракционные гамма-спектрометры. Главную свою задачу — определение энергии электромагнитного излучения — экспериментаторы переложили, так сказать, «на плечи» кристалла кварца, основную часть этого прибора. Квант излучения определенной энергии, падая на плоскость кристаллической решетки кварца, с максимальной интенсивностью отражается под определенным углом. Таким образом, энергию рентгеновских или гамма-квантов с абсолютной точностью как бы устанавливает сам закон природы — закон взаимодействия этих квантов с внутренней структурой кристалла. А физикам остается лишь найти величину угла, на который с максимальной интенсивностью отражается мезорентгеновское излучение. И зависит она от энергии излучения и расстояния между кристаллическими плоскостями.

Правда, на долю создателей прибора остается не так уж мало трудностей. Требуется ювелирное исполнение механических частей прибора и фантастическая точность (до сотых долей угловой секунды!) при измерении довольно больших углов. Необходимо поддерживать и жесткий температурный режим — до одной сотой градуса. Но, выполнив все эти условия, исследователи атомных ядер получают прибор, который измеряет энергию рентгеновских квантов в 100 раз точнее, чем самый удачный полупроводниковый счетчик.

— А насколько резка граница, отделяющая ядро от пустоты микрокосмического пространства?

— Переход между ядерным веществом и вакуумом довольно плавный. На расстоянии среднего радиуса ядра плотность нуклонов всего в два раза меньше, чем в центральной части. Поверхностный слой ядерного вещества составляет более трети радиуса ядра! А дальше простирается область еще более разреженная — ядерная стратосфера.

— Наверное, в этом слое ядра, где частиц совсем мало, уже ничего интересного не происходит?

— Не совсем так. Поверхность ядра столь же богата разнообразными проявлениями свойств ядерных сил, как и его глубины.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука