Атомные орбиты тяжелых адронов расположены еще ближе к ядру, чем орбиты легких мю-мезонов. Но добраться до самых глубоких из них адронам не удается. Экспериментаторы узнают об этом по энергии тех рентгеновских сигналов, которые поступают при перескоках частиц с одной орбиты на другую.
Первые порции этого излучения приносят только электромагнитные впечатления от взаимодействия пи-, К-мезонов или гиперонов с ядром. Короткодействующие ядерные силы еще не чувствуют присутствия в атоме достойного партнера для сильного взаимодействия. Но стоит адрону войти в область «ядерной стратосферы», как тотчас включается сильное взаимодействие, которое перекрывает все остальные. Адрон перестает ощущать атом и общается только с протонами или нейтронами самой периферии ядра. А мю-мезон эту область проскакивает, совершенно не замечая нуклонов, поскольку его удел слабые взаимодействия.
В популярной песенке поется, что «одна дождинка — еще не дождь, одна снежинка — еще не снег». Но для адронов редкие нуклоны ядерной стратосферы уже ядро. И оно тотчас показывает свой характер. Аппетит ядра к сильно взаимодействующим частицам столь велик, что пи-мезон исчезает уже с пятой или шестой орбиты, диаметр которой еще в десять раз больше размера самого ядра. Ну а К-мезон захватывается ядром и того раньше.
Последний сигнал, принимаемый экспериментаторами от адронного атома, последняя порция рентгеновского излучения наиболее ценна, потому что несет максимальную информацию о характере взаимодействия пи-мезона, К-мезона или гиперона с ядром и, что очень важно, о плотности протонов и нейтронов в самых отдаленных, поверхностных, районах ядра.
Это уникальная возможность проверить, а вернее — испытать на деле многие представления, гипотезы и формулы, предлагаемые теоретиками для описания ядерных взаимодействий. Примеряя свои математические построения к тому экспериментальному материалу, что дают экзотические атомы, ученые подбирают наиболее подходящие значения для произвольных параметров, входящих в формулы.
— Судя по всему, «посторонние» сильновзаимодействующие частицы не могут так же долго гостить в ядре, как, например, мю-мезоны. Значит ли это, что физики никогда не получат обстоятельного рассказа о ядре от адрона-очевидца?
— В общем, да. Но, к счастью, в микромире нет правил без исключений. Обнаружены такие ядра, где вместе с протонами и нейтронами отлично «уживается» нейтральный лямбда-гиперон — частица не без «странностей», но, что самое главное, способная к сильному взаимодействию с нуклонами.
В 1953 году польские ученые М. Даныш и Е. Пневский изучали взаимодействие космических лучей с ядрами фотоэмульсий. В то время это был единственный способ проникнуть в мир огромных энергий, где каждое столкновение заканчивалось расщеплением ядра и рождением новых частиц.
В методе фотоэмульсий используются только два прибора: сделанный руками человека микроскоп и прибор удивительно высокой чувствительности, созданный самой природой, — человеческий глаз.
По перепутанным следам зверей на заснеженной поляне опытный охотник воссоздает картину борьбы не на жизнь, а на смерть, полную динамизма и ярости. Линии, прорисованные в эмульсии следами (треками) заряженных частиц, полны движения для рассматривающего их физика и говорят об интересных событиях в микромире.
На картине, застывшей в поле зрения микроскопа, наметанный глаз легко различает тонкий непрерывный след космической частицы большой энергии, угодившей прямо в тяжелое ядро вещества эмульсии. Подобно молнии, которая шутя расщепляет ствол дерева-великана, она раскалывает ядро, из которого высыпаются частицы.
Глаз видит как бы звезду, характерный признак взрыва ядра: из одной точки эмульсии расходятся сразу несколько лучей — треков заряженных частиц.
Польские физики при просмотре облученных в космических лучах фотоэмульсий заметили, что в некоторых звездах среди прочих лучей встречается один совершенно необычный. Необычность следа не в том, что толщина его менялась по мере удаления от центра, а совсем в другом. Характер трека не оставлял сомнений в том, что этот осколок вдребезги разлетевшегося тяжелого ядра эмульсии являлся ядром какого-то легкого элемента. Непонятным было его дальнейшее поведение.
Обычно, быстро обрастая электронами, заряженное ядро все меньше ионизировало вещество эмульсии, а, превратившись в нейтральный атом, окончательно «заметало» свой след. В редких же случаях это ядро тоже взрывалось, образуя небольшую вторичную звезду.