Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Мы узнали, что дробь 1/3 можно записать как 0,333…, где многоточие означало, что тройки повторяются до бесконечности. Это имело для меня смысл, потому что, пытаясь поделить 1 на 3 в столбик, я застрял в бесконечном цикле: 1 меньше 3, поэтому получаем в частном ноль целых, дописываем к единице 0, делим 10 на 3, получаем 3 и остаток 1; в итоге нужно снова делить 1 на 3, то есть мы возвращаемся к тому, с чего начали. Выхода из цикла не было, а значит, тройки при делении будут повторяться: 0,333…

Многоточие после 0,333 истолковывается двумя способами. Наивное толкование состоит в том, что существует буквально бесконечное количество троек, находящихся справа от десятичной запятой вплотную друг к другу. Конечно, мы не можем записать их все, раз их бесконечно много, но с помощью многоточия показываем, что они там есть, по крайней мере в нашей голове. Я назову такую интерпретацию актуальной бесконечностью Преимущество ее в том, что она выглядит простой и здравой, пока мы не желаем особо задумываться о том, что означает бесконечность.

Более изящное толкование состоит в том, что 0,333… представляет собой некоторый предел – в точности такой же, как предельный прямоугольник для наших фигур в доказательстве с пиццей или стена для незадачливого путешественника. Только здесь 0,333… отображает предел последовательных десятичных чисел, которые мы генерируем при делении 1 на 3. Чем больше этапов в процессе деления, тем больше троек в десятичном разложении 1/3. Мы можем получить сколь угодно хорошее приближение к 1/3. Если нам не нравится 1/3  0,3, мы можем сделать еще шаг и получить 1/3  0,33 и так далее. Я назову это толкование потенциальной бесконечностью Она «потенциальна» в том смысле, что приближения можно получать сколь угодно долго. Ничто не мешает сделать миллион, миллиард или любое иное количество шагов. Преимущество этого толкования в том, что нам незачем прибегать к такому туманному понятию, как бесконечность. Мы всегда можем оставаться в области конечного.

Для работы с равенством вида 1/3 = 0,333… не имеет значения, какой точки зрения мы придерживаемся. Они одинаково состоятельны и дают одни и те же математические результаты в любых нужных нам вычислениях. Однако в математике существуют ситуации, когда понятие актуальной бесконечности может вызвать логический хаос. Именно это я подразумевал, когда писал во введении о големе бесконечности. Иногда действительно важно, как мы думаем о результатах процесса, приближающегося к какому-то пределу. Делая вид, что процесс в реальности заканчивается и каким-то образом достигает нирваны бесконечности, подчас можно попасть в неприятную ситуацию.


Притча о многоугольнике с бесконечным числом углов

В качестве примера возьмем круг, расставим на его границе (окружности) через равные промежутки определенное количество точек и соединим их отрезками. При трех точках получим равносторонний треугольник, при четырех – квадрат, при пяти – правильный пятиугольник и так далее, последовательно получая все новые правильные многоугольники.



Обратите внимание, что чем больше точек мы используем, тем ближе наш многоугольник к кругу. При этом стороны многоугольников становятся все короче и многочисленнее. Наш круг – предел для построенных многоугольников.

Таким образом, бесконечность снова соединяет два мира. На этот раз она ведет нас от прямолинейности к криволинейности, от угловатых фигур к гладкому кругу, тогда как в случае с пиццей бесконечность, наоборот, преобразовала круг в прямоугольник.

Конечно же, на любом шаге многоугольник по-прежнему остается многоугольником. Это еще не круг и никогда им не станет. Фигуры приближаются к кругу, но никогда не совпадут с ним. Здесь мы имеем дело с потенциальной бесконечностью, а не с актуальной. Так что с логической точки зрения все безукоризненно.

Но что, если бы мы могли пройти весь путь до актуальной бесконечности? Был бы итоговый многоугольник с бесконечным количеством углов и бесконечно короткими сторонами кругом? Заманчиво так думать, ведь тогда многоугольник окажется гладким. Все углы будут сошлифованы. Все станет идеальным и красивым.

Очарование и опасность бесконечности

Здесь заложен общий принцип: пределы часто проще, чем приближения, ведущие к ним. Круг проще и изящнее, чем любой из угловатых многоугольников, к нему приближающих. То же самое относится и к доказательству с помощью пиццы, где предельный прямоугольник проще и элегантнее, нежели бугристые фигуры с некрасивыми выступами, и к дроби 1/3. Это проще и приятнее, нежели любое из неуклюжих приближений с большими числителями и знаменателями вроде 3/10, 33/100 или 333/1000. Во всех этих случаях предельная фигура или число проще и симметричнее, чем конечные приближения.

В этом и состоит очарование бесконечности. Здесь все становится лучше.

Перейти на страницу:

Похожие книги

История Соединенных Штатов Америки
История Соединенных Штатов Америки

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго, Шелли и Байрона, считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения.История возникновения Соединенных Штатов Америки представляла для писателя особый интерес, ведь она во многом уникальна. Могущественная держава с неоднозначной репутацией сформировалась на совершенно новой территории, коренные жители которой едва ли могли противостоять новым поселенцам. В борьбе колонистов из разных европейских стран возникло государство нового типа. Андре Моруа рассказывает о многих «развилках» на этом пути, о деятельности отцов-основателей, о важных связях с метрополиями Старого Света.Впервые на русском языке!

Андре Моруа , Андрэ Моруа

История / Зарубежная образовательная литература / Образование и наука
Куда идет мир: к лучшему или худшему?
Куда идет мир: к лучшему или худшему?

Никола Тесла – известный изобретатель, инженер, физик. Опытам Теслы приписывают связь с проблемой Тунгусского метеорита, «эксперименту Филадельфия» – превращения большого военного корабля США со всей его командой в невидимый объект и т. п. Считается, что Тесла имел прямое или косвенное отношение ко многим загадкам XX века. Помимо изобретательства Тесла живо интересовался проблемами развития мира в целом, написал ряд работ по актуальным вопросам политики и философии.Альберт Эйнштейн – выдающийся физик-теоретик, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Кроме работ по физике, Эйнштейн – автор около 150 книг и статей в области истории и философии.В книге, представленной вашему вниманию, собраны лучшие философские и политологические произведения Н. Теслы и А. Эйнштейна. В них оцениваются главные события мировой истории XX века; дается ответ на вопрос, куда движется мир и что его ожидает в будущем.В формате a4.pdf сохранен издательский макет.

Альберт Эйнштейн , Никола Тесла

Политика / Зарубежная образовательная литература / Образование и наука
Тайны осиного гнезда. Причудливый мир самых недооцененных насекомых
Тайны осиного гнезда. Причудливый мир самых недооцененных насекомых

Осы – удивительные существа, которые демонстрируют социальное поведение и когнитивные способности, намного превосходящие других насекомых, в частности пчел – ведь осы летали и добывали пищу за 100 миллионов лет до того, как появились пчелы! В книге видного британского энтомолога Сейриан Самнер рассказывается о захватывающем разнообразии мира ос, их видов и функций, о важных этапах их эволюции, о поведении и среде обитания, о жизни одиночных ос-охотников и о колонии ос как о суперорганизме. Вы познакомитесь с историей изучения ос, ролью ос как индикаторов состояния окружающей среды, биоразнообразия экосистем и загрязнения сред обитания, с реакцией популяций ос на возрастающую урбанизацию и прогнозом того, как будет выглядеть наша планета, если на ней исчезнут осы. Узнав больше о жизни этих насекомых, имеющих фундаментальное значение для экологического баланса планеты, можно узнать больше о нас самих и о жизни на Земле.«Осы – одна из самых таинственных и обделенных вниманием жемчужин природы. Бесконечное множество их форм демонстрирует нам одно из самых непредсказуемых и впечатляющих достижений эволюции. Их жизнь тесно переплетена с жизнью других насекомых, а также грибов, бактерий, растений, почвы, экосистем и даже нас с вами. Цель этой книги – усадить ос за почетный стол природы и превратить жуткое отвращение, которое испытывают люди к осам, в восхищение и уважение, каких осы заслуживают». (Сейриан Самнер)В формате PDF A4 сохранён издательский дизайн.

Сейриан Самнер

Экология / Зарубежная образовательная литература / Образование и наука