Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Начало математике[27] положили обычные повседневные задачи. Пастухам нужно было следить за стадами. Фермерам – взвешивать собранное зерно. Сборщикам налогов – решать, сколько коров или кур крестьянин должен отдать правителю. Из таких практических требований и возникли числа. Сначала их определяли по пальцам рук и ног. Затем стали выцарапывать на костях животных. По мере того как представление чисел эволюционировало от черточек к символам, они облегчили все задачи – от налогообложения и торговли до бухгалтерского учета и переписи населения. Доказательства тому мы находим на глиняных табличках Месопотамии, созданных более пяти тысяч лет назад, – сделанная на них клиновидными значками запись называется клинописью.

Наряду с числами значение имели и формы. В Древнем Египте измерениям линий и углов придавали первостепенное значение. Каждый год землемерам приходилось заново проводить границы крестьянских хозяйств, поскольку разлив Нила стирал их. Эта деятельность позже дала название всей области математики, изучающей формы, – геометрия, от древнегреческого слова γεωμετρία, которое означало «землемерие»: γη – «земля» и μετρέω – «измеряю».

Поначалу геометрия работала с прямыми линиями и углами, что отражало ее утилитарное происхождение: треугольники были наклонными плоскостями, пирамиды – монументами и гробницами, а прямоугольники – столами, алтарями и земельными участками. Строители и плотники использовали прямые углы для построения вертикальных линий. Для моряков, архитекторов и священников знание геометрии прямых линий было необходимо для землемерных работ, навигации, ведения календаря, предсказания затмений и возведения храмов и святилищ.

Но всегда – даже когда геометрия была зациклена на прямых линиях – выделялась одна кривая, самая совершенная из всех: окружность. Мы видим ее в годичных кольцах деревьев, в волнах на пруду, в форме солнца и луны. В природе круги повсюду. Когда мы смотрим на них, они смотрят на нас – в буквальном смысле, ведь они в глазах наших близких, в зрачках и радужках. Круги и практичны, и эмоциональны, как колеса и обручальные кольца; в них есть нечто мистическое. Вечное возвращение предполагает цикл времен года, возрождения, вечной жизни и нескончаемой любви. Неудивительно, что круги привлекали внимание с тех пор, как люди стали изучать формы.

С математической точки зрения окружности воплощают изменения без изменений. Точка, двигающаяся по окружности, меняет направление движения, не меняя при этом своего расстояния от центра. Это минимальная форма изменений – самый простой способ двигаться по кривой. И, конечно же, окружность симметрична. Если вы повернете ее вокруг центра, она будет выглядеть точно так же. Такая поворотная симметрия может быть причиной распространенности этих фигур. Везде, где природу не беспокоит направление, обязательно появляются окружности. Посмотрите, что происходит, когда дождевая капля попадает в лужу: от точки удара расходятся мелкие волны. Они обязаны иметь круговую форму, потому что двигаются с одинаковой скоростью во всех направлениях и начинаются в одной точке. Этого требует симметрия.

Окружности могут также порождать другие искривленные формы. Если представить, что окружность проткнули по диаметру и стали вращать вокруг этой оси в трехмерном пространстве, то получится сфера – форма мяча или планеты. Если окружность двигать по прямой перпендикулярно ее плоскости, появляется цилиндр – форма банки или коробки для шляп. Если окружность одновременно с поступательным движением сжимается, образуется конус, если расширяется – то усеченный конус (форма абажура).



Окружности, сферы, цилиндры и конусы очаровывали первых геометров, но при этом они считали, что работать с ними гораздо труднее, чем с треугольниками, прямоугольниками, квадратами, кубами и прочими прямолинейными формами, составленными из кусков прямых линий и плоскостей. Ученых интересовали площади криволинейных поверхностей и объемы криволинейных тел, но они понятия не имели, как решать такие задачи. Криволинейность была сильнее.

Бесконечность как строитель моста

Анализ начинался как отрасль геометрии[28]. Примерно в 250 году до нашей эры в Древней Греции вплотную занялись разгадкой кривых. Амбициозный план состоял в использовании бесконечности для построения моста между кривыми и прямыми. Приверженцы плана надеялись, что как только такая связь будет установлена, методы и техники прямолинейной геометрии можно будет перетащить через этот мост и применить для решения загадки кривых. Бесконечность поможет решить все старые задачи. По крайней мере, таков был настрой.

Должно быть, в то время такой план выглядел довольно надуманным. У бесконечности была сомнительная репутация – будто бы это нечто пугающее, а не полезное. Что еще хуже, само понятие бесконечности было весьма туманно и сбивало с толку. Что это вообще такое? Число? Место? Идея?

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
Вызовы и ответы. Как гибнут цивилизации
Вызовы и ответы. Как гибнут цивилизации

Арнольд Тойнби (1889–1975) – английский философ, культуролог и социолог. Он создал теорию «вызова и ответа» (challenge and response) – закономерность, которая, по его мнению, определяет развитие цивилизации. Сэмюэл Хантингтон (1927–2008) – американский философ, социолог и политолог. Он утверждал, что каждая цивилизация видит себя центром мира и представляет историю человечества соответственно этому пониманию. Между цивилизациями постоянно идет противостояние и нередко возникают конфликты. Исход такой борьбы зависит от того, насколько данная цивилизация «соответствует» сложившемуся миропорядку.В данной книге собраны наиболее значительные произведения А. Тойнби и С. Хантингтона, позволяющие понять сущность их философии, сходство и расхождения во взглядах. Особое внимание уделяется русской цивилизации, ее отличиям от западной, точкам соприкосновения и конфликтам русского и западного мира.

Арнольд Джозеф Тойнби , Самюэль Хантингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература