Многовековая история науки установила глубочайшую связь между веществом и энергией. Теория относительности внесла дополнительную конкретизацию в это основное положение естествознания. Эйнштейн установил, что вещество и энергия, являющиеся двумя формами существования материи, связаны между собой. И вещество в форме частиц и энергия в форме квантов электромагнитного поля или в форме тепла, механических колебаний и других видов энергии являются объективной реальностью и одинаково испытывают действие поля тяготения. Опыт, как мы знаем, подтвердил, что лучи света, идущего от звезд, притягиваются к Солнцу.
Ядерные реакторы также подтверждают и практически используют этот вывод теории относительности.
В таких реакторах, как известно, происходит деление ядер урана. Если бы удалось собрать все осколки, получающиеся при делении ядер урана (в том числе и нейтроны), и взвесить их на сверхчувствительных весах, то оказалось бы, что они весят меньше, чем исходный уран. Разность частично улетела в пространство вместе с антинейтрино, а большей частью ушла на разгон осколков деления, а потом постепенно передалась окружающим атомам в виде тепла, которое используется для работы турбин.
Специалисты говорят: в ядерном реакторе используется дефект массы, то есть разность между массой исходных и конечных продуктов деления. Эта разность превращается на атомных электростанциях в электрическую энергию. Так атомное ядро в соответствии с теорией относительности служит человеку.
Взбесившиеся звезды
Теория относительности предсказала возможность космического омоложения. Она помогла и ответить на вопрос о том, доведется ли когда-нибудь человеку действительно испытать космическое омоложение. Сможет ли он по своему желанию путешествовать в будущее и какой мир привидится ему из окон машины будущего?
...Редкий человек не мечтает, не фантазирует, не заглядывает за пределы возможного. И при этом рождается нечто, что не существует, но должно существовать, если понадобилось людям. Это «нечто» приходит, когда знание настигает мечту.
А бывает, что разум вторгается за пределы фантазии, куда даже и ей трудно добраться. Тогда его находки поражают сильнее, чем самая смелая мечта...
Как-то разговор зашел о космических путешествиях. Душой его был известный ученый, человек, тонко понимающий шутку и ценящий силу этой острой приправы ума, любящий пошутить и сам. Сначала он молчал, прислушиваясь, а потом задумчиво заметил:
– Помню, как-то на отдыхе у меня с соседом возник спор о том, какой мир откроется глазам космонавтов. Под впечатлением этого разговора я взялся за карандаш и бумагу. Они, знаете, часто мирят мечту и действительность. И вот что мне увиделось.
Изумительный, призрачный мир откроется астронавтам. При скоростях ракеты, близких к скорости света, все звезды небосвода дружно «перекочуют» в область неба впереди корабля. Сзади «останутся» лишь немногие. Звезды и планеты, мимо которых пролетит корабль, будут казаться не круглыми, а вытянутыми в его сторону наподобие огурцов, поворачивающимися и меняющими свои очертания. Удивительный пейзаж привидится человеку не на миг, а, чтобы не ошибиться, минут на двадцать возле каждой звезды... Почему? В этом повинны такие законы природы, как аберрация и параллакс. В простейшем виде аберрация проявляется, когда капли отвесного дождя прочерчивают наклонные линии по окну движущегося поезда. Зная скорость падения капель и измерив угол наклона их следов, можно даже определить скорость поезда. Влияние параллакса проще всего обнаружить, быстро взглянув на близкий предмет сперва одним, а затем другим глазом. При этом кажется, что предмет слегка повернулся.
А цвет звезд? Когда мимо нас проносится поезд – простите за надоевший пример, но он самый понятный, – голос его внезапно меняется, хотя на самом деле тон гудка остается постоянным. Это известный акустический эффект Доплера. Так и ближайшая звезда, мимо которой промелькнет ракета, будет «менять» свой цвет. Но этого мало. Звезды в передней части небосвода, кажущиеся нам красными, станут ярко-белыми, а некоторые перестанут быть видимыми, так как почти все их излучение перейдет в область рентгеновых и ультрафиолетовых лучей. Некоторые из звезд, оставшихся в «задней» части небосвода, тоже «исчезнут» из-за того, что их свет превратится в инфракрасные лучи и даже в радиоволны. Эти сюрпризы оказываются неотвратимыми следствиями оптического эффекта Доплера.
Но увидит ли все это пассажир фотонной ракеты? В состоянии ли он будет что-либо видеть? И... возможна ли вообще фотонная ракета?
Озадачив собеседников и весело рассмеявшись, Сергей Михайлович Рытов на секунду остановился, вынул ручку, чтобы пояснить свою мысль, а у присутствующих, наверно не в первый раз в течение рассказа, снова возникло сомнение: не шутка ли все это?