Читаем Безумные идеи полностью

Новиков: Но это тем не менее возможно в рамках теории относительности. Я имею в виду, что можно выбрать такую систему отсчета времени, в которой то вещество, из которого произошли мы и наша аудитория, и вещество, задержавшееся, с нашей точки зрения, в своем развитии, расширяются в одно и то же время.


Зельдович: Гинзбург ставит вопрос об отходе от теории относительности, от современной физики. Я не согласен. Теория относительности – это сбалансированная система, совершенная, красивая. А если о красоте говорит физик, он имеет к тому основания. В теории относительности все гармонично. Работа Новикова хороша тем, что она выдержана в рамках теории. Она ее не отвергает. Конечно, вселенная в целом расширяется. Но было ли это один раз или больше? Конечно, это расширение идет из облака первородной материи, но откуда появилось это исходное вещество? Масса вопросов без ответов. Проблема сверхзвезд перерастает в большую космологическую проблему.


Как ни обескураживает некоторых ученых такая ситуация, но теория относительности пока не в состоянии распутать клубок сомнений, решить вопрос о сверхзвездах. Может быть, такое положение вещей временное и не сегодня-завтра теория выручит ученых, подскажется верное решение. А может быть, настал момент новых фундаментальных открытий, новых великих безумств. Будьте бдительны! Может быть, приближается день, когда теория относительности, мощная в сфере своего применения, будет дополнена вновь открытыми законами природы.


Это не значит, что теория относительности будет заменена какой-то иной системой знаний. Так же как классическая физика не была отменена с появлением теории относительности и квантовой теории, а их создание лишь расширило границы познания, так и будущие теории, не отменяя теории относительности и квантовой механики в границах их применимости, еще шире раздвинут возможности науки.


На пороге нового «безумия» (вместо заключения)


Каждый успех наших

знаний ставит больше

проблем, чем решает.

Луи де БРОЙЛЬ

Современная алхимия


Двадцатипятилетие, последовавшее за Брюссельским конгрессом 1927 года, было почти непрерывным триумфом квантовой физики. Трудности проникновения в молекулы и атомы сводились преимущественно к все возраставшей громоздкости вычислений.


Драмы разыгрывались главным образом в сокровенных глубинах атомного ядра и в связи с рождением (не всегда законным) новых частиц.


Прологом к ним послужили работы Резерфорда, который в 1919 году сумел разрушить атомное ядро, открытое им в 1911 году.


Впервые это произошло во время обычных опытов по изучению строения атома азота. Как всегда, исследуемые атомы подвергались бомбардировке альфачастицами (ядрами атомов гелия). По отклонению путей альфа-частиц, соударяющихся с исследуемыми атомами, можно было судить о строении этих атомов, в частности, о размерах их ядер. Но неожиданно Резерфорд обнаружил, что часть атомов азота, вместо того чтобы, подобно бильярдным шарам, отлетать после удара альфа-частиц, превращалась в атомы кислорода, а альфа-частицы при этом исчезали совсем и вместо них появлялись быстрые протоны. Это было поразительное открытие, заложившее основы новой алхимии. Сбылась мечта средневековья о трансмутации – превращении одних элементов в другие.


Следующее великое открытие в этой области в начале тридцатых годов сделали супруги Жолио-Кюри. Они, следуя за Резерфордом, получили искусственные радиоактивные элементы, которые распадались по тем же законам, что и естественные, но в отличие от естественных были легкими и располагались не в конце таблицы Менделеева, а вблизи ее начала.


Стало ясно, что ядра элементов не являются кирпичами мироздания. Казалось естественным возвратиться к гипотезе английского врача Проута, который на основе кратности атомных весов еще за сто лет до того предположил, что все элементы образуются из самого легкого из них – водорода.


Но так как с тех пор было обнаружено, что вес ядра растет быстрее, чем его заряд, то пришлось предположить, что в ядре имеются электроны, компенсирующие часть заряда, образованного протонами. Эти же электроны, по-видимому, играют в ядре «роль цемента», скрепляющего одноименно заряженные протоны, говорили физики. Без этого было невозможно объяснить устойчивость ядер.


Присутствие в ядре электронов подтверждалось и давно открытым фактом радиоактивного бета-распада. Многие радиоактивные ядра самопроизвольно распадаются с выделением электронов. Это само по себе позволяло предположить, что электроны присутствуют хотя бы в этих ядрах. Правда, возросшая точность эксперимента внесла в опыты с бета-распадом трагическую неясность. Во многих случаях такого распада измерения указывали на видимое нарушение закона сохранения энергии. Чем точнее удавалось измерить энергию исходного ядра, дочернего ядра и вылетевшего электрона, тем явственнее выступала нехватка. В процессе распада энергия, несомненно, исчезала совершенно непонятным путем.


Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература