Читаем Безумные идеи полностью

Копенгагенская дискуссия продолжала бушевать много месяцев подряд. Споры тянулись до глубокой ночи. Надежда на просвет сменялась разочарованием. Это был один из замечательных «котлов» коллективного научного творчества. Гейзенберг вспоминает: «И когда я после таких обсуждений предпринимал прогулку в соседний парк, передо мной снова и снова возникал вопрос, действительно ли природа может быть такой абсурдной, какой она предстает перед нами в этих атомных экспериментах».


Вновь и вновь обсуждалась работа Бора, Крамерса и Слетера, которые еще в 1924 году пытались устранить противоречие между волновой и корпускулярной картинами. Они считали электромагнитные волны не реальными полями, а волнами вероятности, показывающими, где скорее всего должен появиться квант света – фотон. Но эта упрощенная точка зрения оказалась неверной. Она приводила, в частности, к возможности нарушения закона сохранения энергии в элементарных актах, а это было недопустимым прегрешением против святая святых природы.


Закон сохранения энергии не мог быть нарушен. Взаимосвязь между волновой и корпускулярной картинами должна была быть более сложной. Однако идея вероятностной интерпретации вновь и вновь порывалась на поверхность копенгагенского «котла».


Использовав идеи Шредингера, Макс Борн предположил, что волна вероятности – это не трехмерная волна, аналогичная радиоволнам, свету или упругим волнам, а шредингеровская волна в многомерном пространстве. Это уже не волна материи, не материальный заменитель электрона, фотона или другой частицы, а абстрактный математический образ, тесно связанный с этими частицами. Борн предположил, что квадрат от амплитуды (высоты) этой незримой нематериальной волны определяет вероятность появления частицы в данном месте и в данный момент. Представить эту волну как нечто материальное невозможно и не нужно, но она удивительным образом позволяла согласовать теорию с экспериментом.


Эта трактовка не приводила к нарушению закона сохранения энергии. Но оставалось много неясностей: как определять, например, такую основную и, казалось, простую величину, как скорость частицы?

Дорогая цена


Выход из положения снова указал Гейзенберг. Стремясь к формальной стройности теории и много размышляя над философией проблемы, он сформулировал знаменитое соотношение неопределенностей. Оно было предельно просто: произведение ошибок в определении положения частицы и ее скорости не может быть меньше определенной величины, тесно связанной со знаменитым квантом, введенным еще Планком.


Гейзенберг не давал математического анализа истоков этого соотношения. Он вывел его из простого мысленного эксперимента и показал, что на опыте оно всегда справедливо. Он продемонстрировал новые возможности, открывающиеся, если признать это соотношение, в качестве основного закона микромира.


Новое соотношение, возведенное в ранг принципа неопределенности, позволило придать квантовой механике формальное совершенство и внутреннюю непротиворечивость. Но эти преимущества оказались оплаченными дорогой ценой. Квантовой механике пришлось отказаться от детального, наглядного описания процессов.


Исчезла наглядность, столетиями помогавшая ученым в их путешествиях по дебрям неведомого. Нельзя было даже мысленно проследить за траекторией движения электрона – ведь для этого нужно было одновременно знать его положение и скорость, а теория объявила это невозможным. Теории пришлось даже отказаться от возможности подробного анализа причин явлений микромира. Новая теория разорвала цепь бытия.


«Пала связь времен. Зачем же я связать ее рожден?» – вероятно, задавали себе не раз гамлетовский вопрос физики, приговорившие себя к добровольной каторге на галерах микромира. От привычной канвы событий остались отдельные звенья, связанные лишь нематериальными математическими формулами. Можно было вычислить лишь вероятность того, что за данной причиной наступит определенное следствие.


В науку вторглась случайность, но не случайность классической физики, бывшая лишь результатом отказа от чересчур громоздких вычислений в очень сложных задачах, а новая случайность, которая приобретала принципиальный характер. Выявились новые вероятностные закономерности, управляющие микромиром.


Оказывалось, что природа устроена так, что в ней не всегда действуют простые механические причинные связи.


Это была знаменитая копенгагенская интерпретация, родившаяся в результате ожесточенных споров и напряженного творчества многих ученых.


Ее положения совершенствовались и уточнялись еще в продолжение длительного времени в ходе новых широких дискуссий.

Двойное решение


Ученым старшего поколения – Лорентцу, Эйнштейну, Планку и многим другим, стихийно стоявшим на позициях материализма, копенгагенская интерпретация казалась неприемлемой.


Они считали, что классическая причинность является непременным элементом природы и всякая физическая теория должна быть способна однозначно описывать связь между причиной и следствием.


Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература