Читаем Безумные идеи полностью

Исключение составлял, пожалуй, лишь один из исследователей – француз Муассан. Он знал, что алмазы находили в метеоритах – обломках далеких звездных миров. Слышал он и о том, что алмазы встречались не во всех метеоритах, а только в тех, которые состояли из почти чистого железа. Вот Муассан и решил попытаться сделать искусственные алмазоносные метеориты. Он расплавил железо, бросил в него несколько кусков угля и через некоторое время быстро охладил это варево водой. Представьте себе, Муассан объявил, что добился успеха! По его словам, ему удалось таким путем получить искусственные алмазы. Но опять-таки странное дело: сколько ни бились другие ученые, повторить опыт Муассана им не удавалось. Вернее, опыт-то они повторяли, и даже очень тщательно, только алмазы при этом не получались.


Как ни мудрили охотники за искусственными алмазами, обогатиться на этом поприще им так и не удалось. Результаты опытов были ничтожны. В лучшем случае это были дешевые блестящие камешки. Но чаще всего трудоемкие эксперименты дарили лишь золу и пепел. Сколько же было истрачено зря полезных и ценных материалов!


Впрочем, совсем не зря. Бесценными для науки оказались сами опыты. Они помогли родиться физике сверхвысоких давлений.

От охлаждения к сжатию


В тридцатых годах нашего столетия физики и химики начали уделять особое внимание изучению веществ при очень низких температурах.


Казалось крайне заманчивым заглянуть внутрь вещества, скованного морозом, когда его обычно подвижные, «полные жизни» атомы как бы впадают в зимнюю спячку. Тогда они меньше взаимодействуют между собой, их легче «рассмотреть», удобнее изучить.


Ученые, которые выбрали своей специальностью физику низких температур, занимали в науке особое место. Они, пожалуй, несколько напоминали... охотников за тайнами морского дна. Исследователь подводного мира не станет спускаться на дно в сильную волну. Ему будут мешать песок, ил, обрывки водорослей, замутившие воду. Нет, для знакомства с жизнью моря он выберет тихий день, когда вода прозрачна и ясно видно каждое движение подводных растений, легко наблюдать повадки крупных рыб и даже маленьких рачков, креветок и мальков.


Для охотников за тайнами, скрытыми в глубинах вещества, тоже важна «погода» в этом своеобразном мире. Чем выше температура, тем оживленнее ведут себя атомы и молекулы, из которых состоит тело. И в этом интенсивном общем движении частичек материи теряются, скрываются от глаз наблюдателя особенности жизни каждой отдельной частички. А ведь от них зависят поведение и особенности всего вещества в целом.


Вот почему ученые прибегли к охлаждению веществ. Они правильно предположили, что при этом станут более доступными тонкие эффекты поведения отдельных частичек.


Первая лаборатория по изучению низких температур в Советском Союзе была открыта в Харькове. Она стала центром притяжения многих талантливых молодых физиков. Среди них был и Леонид Федорович Верещагин, ныне действительный член Академии наук.


– Основной трудностью, с которой столкнулся коллектив лаборатории, – вспоминает Леонид Федорович, – была проблема глубокого охлаждения. Нас особенно интересовала, конечно, самая низкая в природе температура или хотя бы близкая к ней. А это минус 273 градуса Цельсия, или абсолютный нуль по шкале Кельвина. Получить такую температуру очень трудно. Для этого надо строить громоздкие машины искусственного климата, в которых можно было бы создать более чем арктический мороз. И вот однажды у нас появилась идея. Тело при охлаждении уменьшается в объеме. А при очень низкой температуре вещества сжимаются особенно сильно. Холод поступает с ними точь-в-точь как высокое давление. Вот мы и подумали: охладить вещество сложно и трудно. Так не удобнее ли заменить охлаждение сжатием?


И Леонид Федорович рассказывает об одном из самых первых опытов.


В сосуде – кислород. Его не видно – это бесцветный газ. Но вот сосуд ставят в установку искусственного климата. Сильно охлажденный кислород превращается в бледно-голубую жидкость. Скорость хаотического движения молекул уменьшается, газ как бы застывает. Если сосуд встряхнуть, будет полное впечатление, что в нем подкрашенная вода.


Годами для получения жидкого кислорода и других газов ученые пользовались специальной сложной аппаратурой.


Но вот однажды, вместо того чтобы поместить кислород в машину искусственного климата, его сжали поршнем. Сначала газ оставался бесцветным. Тогда его сжали еще сильнее. Кислород начал голубеть, послушно превращаясь в жидкость.


Первые же опыты применения высокого давления вместо низкой температуры для изучения строения вещества убедили в огромных перспективах нового метода.


Верещагин страстно увлекся новой областью физики. Где только можно, он заменял охлаждение сжатием. Одно за другим он исследовал новым методом самые различные вещества: жидкости, газы, твердые тела. Об опытах молодого физика заговорили. Его попросили доложить о своей работе в Москве.


Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература