ДНК в основном расположена в ядре клетки, а синтез белка происходит в цитоплазме, на особых клеточных микроструктурах —
Синтез и-РНК заключается в том, что молекула ДНК, как имеющая двойную спираль, в определенные моменты раскручивается и на каждой из раскрученных нитей ДНК строится молекула и-РНК по принципу комплементарное™ (рис. 59). Следовательно, каждому азотистому основанию ДНК соответствует комплементарное азотистое основание и-РНК. В результате этого молекула информационной РНК в точности повторяет последовательность азотистых оснований ДНК и, следовательно, генетическую информацию. Молекула и-РНК является матрицей, на которой строится белок, соответствующий данному организму.
Рис. 59. Образование информационной РНК
Основная функция аминокислот — это участие в биосинтезе белка. Начинается этот процесс с активации аминокислот (при участии АТФ с образованием комплексов —
Биосинтез белка заключается на последнем этапе в том, что т-РНК определенной аминокислоты своим антикодом присоединяется к кодону и-РНК. К следующему кодону и-РНК присоединяется антикодон другой т-РНК с новой аминокислотой. Две последовательно расположенные аминокислоты соединяются между собой при помощи
Рис. 60. Схема биосинтеза белка в рибосоме (по А. С Спирину)
Таким путём происходит образование
Процесс биосинтеза белка находится под контролем как механизмов внутри клетки, так и вне ее.
Другие пути превращения аминокислот
Дезаминирование
Этот процесс заключается в расщеплении аминокислот под действием ферментов
Дезаминирование может происходить несколькими путями, которые представлены в виде схем:
Как установлено, у животных и человека преобладает внутримолекулярное и окислительное дезаминирование. Последний процесс происходит в два этапа через стадию образования иминокислоты:
В организме человека наиболее активно протекает дезаминирование глютаминовой кислоты под действием фермента глютаматдегидрогеназы, обнаруженного в митохондриях всех тканей. При этом образуется α-кетоглютаровая кислота, которая принимает участие во многих процессах обмена веществ.
Ферменты, катализирующие процессы дезаминирования, могут катализировать и обратные процессы — аминирования. Синтез аминокислот из кетокислот и аммиака получил название прямого, или восстановительного, аминирования.
Активен процесс аминирования глютаминовой и аспарагиновой аминокислот, когда аммиак присоединяется по месту гидроксила карбоксильной группы с образованием их амидов — глютамина и аспарагина:
Переаминирование
В 1937 г. отечественными учеными акад.
При изучении этого процесса были открыты ферменты, которые катализируют эти превращения. Они относятся к аминотрансферазам. Это сложные ферменты, простетической группой которых является фосфопиридоксаль — фосфорный эфир витамина В6.
А. Е. Браунштейн
Процесс переаминирования является сложным процессом и протекает в 2 этапа. На первом этапе происходит перенос NH2-группы с аминокислоты на кофермент аминотрансферазы (фосфопиридоксаль). При этом аминокислота превращается в соответствующую кетокислоту. На втором этапе аминогруппа с кофермента передается на кетокислоту, которая превращается в аминокислоту.
(1)
(2)