Кровь осуществляет транспорт различных химических веществ по кровеносным сосудам.
1. Дыхательная функция – перенос кислорода из легких в ткани и СО2 из тканей в легкие.
2. Трофическая функция – транспорт питательных веществ: глюкозы и кетоновых тел, липидов, жирных кислот, аминокислот и т.д.
3. Выделительная функция – транспорт конечных продуктов обмена из тканей в выделительные органы: мочевины из печени в почки, билирубина из тканей в печень.
4. Регуляторная функция – транспорт сигнальных молекул (гормонов, регуляторных пептидов и др.) от органов внутренней секреции к тканям-мишеням.
5. Защитная функция – обусловлена следующими факторами:
• клеточные (лейкоциты, лимфоциты, макрофаги) и гуморальные (антитела) элементы иммунной защиты;
• факторы свертывания крови.
6. Регуляция осмоса – белки крови поддерживают коллоидно-осмотическое давление и тем самым обеспечивают постоянный объем крови.
7. Регуляция рН (кислотно-основного равновесия).
Кислотно-основное равновесие обеспечивается буферными системами крови:
• бикарбонатная (на её долю приходится ~ 10% всей буферной емкости крови) представлена сопряженной кислотно-основной парой, состоящей из молекул угольной кислоты Н2СO3 (донор протона) и бикарбонат-иона НСО3- (акцептор протона).
• фосфатная (составляет 1% буферной емкости крови) сопряженная кислотно-основная пара: ион Н2РО4- (донор Н+) и ион НРО42- (акцептор Н+).
• гемоглобиновая самая мощная система – обеспечивает 75% буферной емкости крови, состоит из неионизированного оксиНв (ННвО2) и калиевой соли оксиНв (КНвО2).
• белковая имеет меньшее значение; белки образуют буферные системы благодаря наличию кислотно-основных групп в молекуле.
8. Терморегуляторная функция – кровь поддерживает постоянство температуры тела в разных его частях.
Особенности метаболизма в форменных элементах крови
Эритроциты:
1. Зрелые эритроциты лишены ядра, поэтому в клетке не синтезируются белки. Эритроцит почти целиком заполнен гемоглобином.
2. Эритроциты не имеют митохондрий, поэтому в клетке не протекают реакции ЦТК, ЦТД, -окисления жирных кислот.
3. Основной путь получения энергии – гликолиз, 90% глюкозы в эритроцитах распадается в процессе анаэробного гликолиза.
4. Энергия, поставляемая гликолизом, обеспечивает поддержание целостности плазматической мембраны и работу Na+, K+-АТФазы.
5. Особенностью гликолиза в эритроцитах является наличие шунта, приводящего к образованию 2,3-дифосфоглицерата – одного из регуляторов переноса кислорода. При связывании его с гемоглобином уменьшается сродство гемоглобина к кислороду и облегчается освобождение кислорода из эритроцитов в тканях.
Реакция образования 2,3-дифосфоглицерата, отсутствующая в «классическом» гликолизе, называется шунт Раппопорта.
6. 10 % глюкозы распадается в эритроците в пентозофосфатном пути. Образующийся при этом НАДФН обеспечивает восстановление глутатиона и поддерживает его оптимальную концентрацию. Восстановленный глутатион необходим для поддержания в восстановленной форме SH-групп белков; препятствует окислению гемоглобина; предотвращает перекисное окисление липидов мембран. При снижении концентрации восстановленного глутатиона эритроцит быстро «стареет».
Лейкоциты:
1. Лейкоциты являются полноценными клетками с большим ядром, митохондриями и высоким содержанием нуклеиновых кислот.
2. В лейкоцитах активно протекают процессы биосинтеза нуклеиновых кислот и белков.
3. Основной путь получения энергии – аэробный гликолиз. АТФ образуется также в реакциях -окисления жирных кислот.
4. В лейкоцитах сосредоточен весь гликоген крови, который является источником энергии при недостаточном её поступлении.
5. В лизосомах лейкоцитов локализована мощная система протеолитических ферментов – протеазы, фосфатазы, эстеразы, ДНК-азы, РНК-азы, что обеспечивает участие этих клеток в защитных реакциях организма. В результате действия этих ферментов разрушаются полимерные молекулы микроорганизмов и образуются мономеры (моносахариды, аминокислоты, нуклеотиды), которые поступают в цитозоль и могут использоваться клеткой.
6. Поглощение бактерий лейкоцитами в процессе фагоцитоза сопровождаются резким увеличением потребления кислорода с образованием супероксидного аниона и пероксида водорода (см. лекцию № 11), которые оказывают бактерицидное действие. Это явление называется «распираторным взрывом».
Лимфоциты. Продуцируются в лимфатической ткани. Интенсивный синтез белков и -глобулинов в этих клетках обуславливает важную роль лимфоцитов в иммунных процессах (образование антител).
Тромбоциты – кровяные пластинки.
1. Тромбоциты не могут считаться полноценными клетками, поскольку не содержат ядра.
2. В тромбоцитах протекают основные биохимические процессы: синтез белка, реакции обмена углеводов и липидов, окислительное фосфорилирование.