Читаем Биологически активные полностью

— Пусть у нас имеется некоторое количество одинакового размера картонных квадратиков. Их стороны могут быть окрашены в четыре разных цвета — красный, желтый, зеленый, синий. Мы начинаем покрывать ими, как пол керамической плиткой, некую поверхность, соблюдая при этом кое-какие правила. Они, эти правила, определяют пары цветов, которые могут приходить в соприкосновение. Скажем, к красной стороне квадрата могут быть приставлены красная же и синяя, к желтой — только синяя, зеленая сторона должна быть свободна — к ней нельзя приставить никакой другой квадрат вообще, и т. д.

Рассмотрим простой случай, когда представлены лишь несколько способов раскраски квадратов: скажем, все стороны красные, пара противоположных сторон — красная, другая — зеленая, три стороны зеленые, одна красная. Наша задача формулируется следующим образом: возможно ли построение с соблюдением принятых правил ограниченных структур, то есть таких, к которым нельзя более приставить ни одного квадратика, и если да, то каковы свойства этих структур?

В рассматриваемом случае существуют два основных типа неограниченных структур: поверхность, состоящая полностью из красных квадратиков, и вытянутая полоска из квадратиков, у которых в красный цвет окрашены противоположные стороны. Эту полоску можно в любом месте ограничить, приставив красной стороной квадратик, у которого остальные три стороны — зеленые. Вот уже и имеем первый тип ограниченных структур: полоска любой длины. Если же в каком-то месте заменить квадратик с двумя красными сторонами на полностью красный, можно построить перпендикулярную полоску; вот и еще один тип ограниченных структур: крест. Таким образом можно построить и более сложные фигуры, а именно: прямоугольные решетки любой структуры. Легко видеть, что это самый общий тип ограниченных структур, и полоска, и крест — его частные случаи.

Это, разумеется, простейший пример. Вообще же говоря, правила совместимости цветов могут быть более сложными, допустимые способы раскраски квадратиков — разнообразнее, да это и не должны быть обязательно квадратики, а, скажем, правильные шестиугольники или равнобедренные треугольники. И тут для выявления ограниченных структур уже требуются солидный математический аппарат и довольно громоздкие расчеты на ЭВМ. Особый интерес для нас представляет случай, когда ограниченные структуры формируются единственным возможным способом.

Здесь оказывается полезной следующая теорема. Выразим через композицию бинарных отношений Pi на множестве Ω объектов…

Далее все перестали что-либо понимать и высвободившееся в результате этого время использовали для обмена замечаниями: язвительно-недоуменными, просто язвительными и просто недоуменными.

— Позвольте, при чем здесь биофизика?

— Уж не забрели ли мы случайно на семинар по кубику Рубика?

— Откуда он, этот головоломщик?

— Это не кубик Рубика, это скорее пасьянсы.

— Но вот уж действительно: какая же это биофизика?

Давненько все это, правда, происходило, и сейчас, пожалуй, реакция участников была бы иной; но на той конференции и впрямь лишь немногие присутствующие вполне четко представляли себе, что предложенная их вниманию задача имеет самое прямое отношение к проблеме самосборки надмолекулярных биологических структур — одной из центральных в современной биофизике.

Много чего удивительного, конечно, происходит внутри клетки, и все же одно из наиболее удивительных явлений — это именно самосборка основных структур протоплазмы. Подобно квадратикам нашего непонятого докладчика слипаются друг с другом (сами по себе!) хитроумной формы молекулы белков и других соединений, образуя фантастической сложности структуры.

Пожалуй, один из самых наглядных и относительно простых примеров самосборки надмолекулярных структур клетки — образование мембран.


Мембраны

Протоплазма каждой клетки отделена от окружения, будь то другие клетки или некоторая среда, тончайшим, всего в несколько молекул толщиной, образованием — мембраной. Будучи столь невероятно тонкой, мембрана тем не менее очень надежно изолирует протоплазму от проникновения нежелательных веществ извне и препятствует выходу наружу соединений, находящихся в плазме. Впрочем, в зависимости от условий проницаемость мембраны по отношению к отдельным веществам может меняться, так что она функционирует как бы в роли регулятора материального баланса клетки. Особые мембраны изолируют и внутриклеточные образования — такие, как ядро или хлоропласт, — от остальной протоплазмы.

Воспользуемся для описания структуры и принципов самосборки мембраны моделью нашего друга — незадачливого докладчика от квадратиков. Сделаем ее для этого трехмерной — вместо квадратиков у нас будут кубики. Раскрашены они все совершенно одинаково: пять граней красных, одна зеленая.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Эволюция. Классические идеи в свете новых открытий
Эволюция. Классические идеи в свете новых открытий

Что такое польза? Как случайная мутация превращает аутсайдеров в процветающих победителей? Что важнее для эволюции — война или сотрудничество?Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.

Александр Владимирович Марков , Александр Марков , Елена Борисовна Наймарк , Елена Наймарк

Биология, биофизика, биохимия / Биология / Образование и наука