Если такая игрушка цела и невредима, то достаточно надуть ее один раз, чтобы образовалась статическая структура, форма которой не изменяется в течение некоторого времени. Совсем иное дело, если в ней где-нибудь появится дырка, пропускающая воздух. Обычно в таком случае мы либо заклеиваем дырку либо выбрасываем испорченную игрушку. Но ее можно было бы использовать в качестве модели динамической структуры. Непрерывно подкачивая в игрушку воздух, мы тем самым компенсируем утечку, и резиновый зверь остается более или менее плотным. Выходящий из дырки воздух все время заменяется новым. Утечка воздуха через дырку не постоянна, а зависит от давления. Если надувать игрушку более интенсивно, давление внутри нее повысится и утечка воздуха усилится. Для каждой скорости надувания устанавливается в соответствии с внутренним давлением своя скорость утечки.
Итак, мы видим, что в отличие от статических, динамические структуры регулируются процессами, обусловливающими их разрушение и восстановление. Это очень важная мысль, она объясняет, почему биологические объекты приспосабливаются к изменяющимся условиям много лучше, чем любые технические системы.
Состояние, при котором распад уравновешивается синтезом, называют динамическим равновесием. Этот термин полвека назад предложил Людвиг фон Берталанфи. С тех пор теория динамического равновесия приобрела в биологии большое значение.
Весьма наглядную модель динамического равновесия представляет сосуд со стоком. Если в такой сосуд наливать сверху воду, она будет вытекать снизу. Вначале приток больше, чем сток, и уровень воды постепенно повышается. Но с повышением уровня растет давление, а следовательно, увеличивается скорость вытекания воды. В какой-то момент приток и сток уравновесят друг друга и в сосуде установится некий постоянный уровень воды, т. е. будет достигнуто не зависимое от времени состояние динамического равновесия. Оно поддерживается, конечно, до тех пор, пока приток воды остается неизменным. Если скорость притока увеличить, уровень воды вновь начнет подниматься, пока не установится новое равновесное состояние. И наоборот, если приток воды уменьшить, ее уровень понизится. Аналогичным образом система реагирует и на изменение стока.
Однако оставим нашу модель. Она достаточно наглядна, и возникающие в ней изменения можно легко наблюдать. А встречается ли в живой природе состояние динамического равновесия? Оказывается, это основной принцип функционирования живой системы, который реализуется на всех! уровнях биологической организации.
Начнем с молекул. В последние годы стало возможным получать радиоактивные изотопы всех элементов, в том числе и многих биологически важных. Существуют изотопы, которые химически и биохимически ничем не отличаются от "нормальных" атомов, но их присутствие легко обнаружить по регистрируемому приборами излучению. При помощи этих так называемых радиоактивных изотопов можно "метить" молекулы и следить за индивидуальной заменой одной молекулы другой, а также наблюдать и измерять восстановление отдельных частей молекулы. Эксперименты показали, что все молекулы более или менее быстро заменяются новыми и что постоянство биохимического состава есть не что иное, как состояние динамического равновесия, которое поддерживается на протяжении всего времени существования организма.