Как в данном случае происходит процесс преобразования энергии? Мы уже говорили, что свет с высокой энергией вызывает колебания не столько самих молекул, сколько отдельных их частей. Высокая энергия оказывает воздействие только на электроны. Вспомним наши рассуждения о химической энергии и модели атома Бора с его электронными орбитами: каждой электронной орбите соответствует определенный энергетический уровень. При поглощении фотона энергия электрона увеличивается, в результате он переходит на более удаленную от ядра орбиту.
Обычно электрон быстро возвращается в исходное состояние, отдавая при этом "лишнюю энергию" в виде флуоресценции[7]
. Особенность молекулы хлорофилла и ее белкового окружения в хлоропласте растительной клетки состоит только в том, что свой обратный путь электрон проходит через "машину" обмена веществ, которая забирает и использует энергию, освобождающуюся при переходе электрона в прежнее состояние. Помимо всего прочего, при этом возникает АТФ, аденозинтрифосфат, который уже знаком нам как химический аккумулятор. Синтез глюкозы из углекислого газа воздуха и воды, обычно называемый фотосинтезом, является вторичным процессом, в ходе которого используется химическая энергия образовавшихся молекул АТФ.На первый взгляд все достаточно просто. Но это лишь кажущаяся простота. На самом деле точный расчет энергетического уровня различных возбужденных состояний атомов и молекул в квантовой биофизике и квантовой механике является исключительно сложной задачей. Трудно даже сказать, можно ли вообще точно рассчитать возбужденные состояния и изменения сложных биологических молекул на современном уровне развития квантовой механики. Поэтому оставим этот вопрос до будущих времен и продолжим наше знакомство с часовым механизмом живого.
До сих пор мы обращали внимание только на две формы энергии — тепловую и химическую — и осветили этот вопрос довольно односторонне. Тепловую энергию мы рассматривали лишь как неизбежное зло, своего рода потерю энергии. Однако теплота — это, конечно, не неизбежное зло, а жизненно важная необходимость. Для функционирования живых систем требуется оптимальная температура, которая у теплокровных животных поддерживается строго постоянной независимо от температуры окружающей среды. Отдача тепла строго регулируется: оно не должно рассеиваться ни слишком сильно, ни слишком слабо. Это мы уже неоднократно подчеркивали.
О химической энергии мы также рассказали слишком кратко. У читателя могло сложиться впечатление, будто растения синтезируют органические молекулы только для того, чтобы обеспечить пищей животных. Подобный принцип целесообразности, принцип "для того... чтобы" присущ телеологии и, конечно, совершенно неприемлем для естествоиспытателя. И если он где-то и выплыл в нашей книге, то лишь по причине удобства и простоты. Но, даже если исключить эту методологическую ошибку, такие представления были бы неверны. Сложные органические молекулы — это не только метаболиты, но и одновременно строительный материал для живого организма.
Таким образом, следует добавить: химическая энергия необходима организму в первую очередь для того, чтобы построить часовой механизм живого. Шестеренки "живых" часов должны сами себя синтезировать и поддерживать в динамическом равновесии. , как мы установили еще в предыдущей главе, чтобы поддерживать состояние динамического равновесия, нужна энергия.
Теперь, сделав все необходимые дополнения и уточнения, касающиеся химической и тепловой энергий, мы рассмотрим другие формы энергии, имеющие значение для функционирования живого организма. И растения, и животные совершают механические движения, которые также требуют затрат энергии. Механизмы таких движений у растений и животных совершенно, различны. О специфике многих движений у растений мы еще будем говорить. В настоящее время наиболее изучен процесс образования механической энергии в скелетных мышцах. Остановимся вкратце на современном состоянии вопроса.